

Cambridge IGCSE[™]

CHEMISTRY 0620/21

Paper 2 Multiple Choice (Extended)

October/November 2021

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

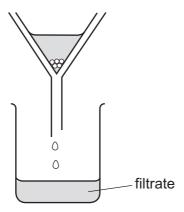
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 Decane has a freezing point of -30 °C and a boiling point of 174 °C.

A small sample of decane is placed in an open beaker in an oven at a temperature of 120 °C and at atmospheric pressure for 24 hours.


What happens to the sample of decane?

- A It boils.
- **B** It evaporates.
- C It melts.
- **D** It sublimes.
- 2 A student put exactly 25.00 cm³ of dilute hydrochloric acid into a conical flask.

The student added 2.5 g of solid sodium carbonate and measured the change in temperature of the mixture.

Which apparatus does the student need to use?

- A balance, measuring cylinder, thermometer
- **B** balance, pipette, stopwatch
- C balance, pipette, thermometer
- **D** burette, pipette, thermometer
- **3** A student separates sugar from pieces of broken glass by dissolving the sugar in water and filtering off the broken glass.

What is the filtrate?

- A broken glass only
- **B** broken glass and sugar solution
- **C** pure water
- **D** sugar solution

4	Wh	ich statement ex	plair	ns why metals c	ondu	ct electricity wh	en s	olid?
	Α	They have ator	ns w	hich are free to	mov	e.		
	В	They have elec	tron	s which are free	to m	nove.		
	С	They have molecules which are free to move.						
	D	They have posi	tive	ions which are f	ree t	o move.		
5	Wh	nich description of brass is correct?						
	Α	alloy						
	В	compound						
	С	element						
	D	non-metal						
6	The	e equation for the	e rea	ction of iron(III)	oxic	le with carbon n	nono	xide is shown.
				$Fe_2O_3(s) + 30$	CO(a	\rightarrow 2Fe(s) +	3CC) ₂ (q)
	\//h	at is the maximu	ım m	_	ν.Ο	, , ,		of iron(III) oxide?
								, ,
	Α	56 g	В	112g	С	168 g	D	336 g
7	Wh	ich statement de	escril	oes the attractiv	e for	ces between mo	olecu	ıles?
	A	They are strong	g cov	alent bonds wh	ich h	old molecules to	ogeth	ner.
	В	They are strong	g ion	ic bonds which	hold	molecules toget	her.	
	С	They are weak	forc	es formed betwe	een d	covalently-bonde	ed m	olecules.
	D	They are weak	forc	es which hold io	ns to	ogether in a lattion	ce.	
8	Wh	ich statement ab	out	carbon is correc	:t?			
	Α	Diamond and g	raph	ite both have si	mple	molecular struc	ture	S.
	В	Diamond and g	raph	ite are both use	d to	make cutting to	ols.	
	С	Each carbon at	om i	n diamond is bo	nde	d to three other	carbo	on atoms.
	D	Graphite condu	icts 6	electricity and ha	as a	giant covalent s	truct	ure.
9	The	e formula of an a	lumi	nium ion is A l^{3+}				
	Wh	at is the formula	of a	luminium sulfate	e?			
	Α	Al ₂ SO ₄	В	Al(SO ₄) ₂	С	Al ₂ (SO ₄) ₃	D	$Al_3(SO_4)_2$

10 Which statements about the products of electrolysis, using inert electrodes, are correct?

- 1 When molten lead(II) bromide is electrolysed, bromine is formed at the cathode.
- When dilute sulfuric acid is electrolysed, oxygen is formed at the anode.
- 3 When concentrated aqueous sodium chloride is electrolysed, sodium is formed at the cathode.
- 4 When concentrated hydrochloric acid is electrolysed, chlorine is formed at the anode.
- **A** 1 and 2
- **B** 1 and 3
- C 2 and 4
- **D** 3 and 4

11 Chlorine reacts with ethane to produce chloroethane and hydrogen chloride.

The reaction is exothermic.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C–C1	+340
C–C	+350
C–H	+410
Cl-Cl	+240
H–C1	+430

What is the energy change for the reaction?

- **A** -1420 kJ/mol
- **B** -120 kJ/mol
- C +120 kJ/mol
- **D** +1420 kJ/mol

12 Hydrogen is used as a fuel in rockets and is also used in hydrogen fuel cells.

Which statements are correct?

- 1 Both uses produce water vapour.
- 2 Burning hydrogen produces polluting gases.
- 3 A fuel cell produces electricity.
- **A** 1, 2 and 3 **B** 1 and 3 only **C** 1 only **D** 2 and 3 only
- 13 Which statements about the effect of increasing the temperature on the rate of a reaction are correct?
 - 1 It increases the rate of a reaction.
 - 2 It increases the activation energy.
 - 3 It increases the frequency of collisions.
 - **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- **14** Ammonia is made by reacting nitrogen with hydrogen.

The equation for the reaction is shown.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The forward reaction is exothermic.

Which changes in temperature and pressure decrease the yield of ammonia?

	temperature	pressure
Α	decrease	decrease
В	decrease	increase
С	increase	decrease
D	increase	increase

15 X is a pink solid.

Y is a blue solid.

When X is heated, water is produced and the solid turns blue.

When water is added to Y, the solid turns pink.

What are X and Y?

	X	Y
Α	anhydrous cobalt(II) chloride	hydrated cobalt(II) chloride
В	hydrated cobalt(II) chloride	anhydrous cobalt(II) chloride
С	anhydrous copper(II) sulfate	hydrated copper(II) sulfate
D	hydrated copper(II) sulfate	anhydrous copper(II) sulfate

16 Iron(II) chloride solution reacts with chlorine gas.

The equation is shown.

$$2FeCl_2(aq) + Cl_2(g) \rightarrow 2FeCl_3(aq)$$

Which statements about this reaction are correct?

- 1 Fe²⁺ ions are reduced to Fe³⁺ ions.
- 2 Chlorine acts as a reducing agent.
- 3 Fe²⁺ ions each lose an electron.
- 4 Cl_2 molecules are reduced to Cl^- ions.
- **A** 1 and 2 **B** 2 and 3 **C** 2 and 4 **D** 3 and 4

17 Which row describes the properties of an acid?

	property 1	property 2
Α	proton acceptor	pH less than 7
В	proton acceptor	pH more than 7
С	proton donor	pH less than 7
D	proton donor	pH more than 7

- 18 Which element forms an amphoteric oxide?
 - A aluminium
 - **B** carbon
 - C magnesium
 - **D** silicon
- **19** Copper(II) chloride crystals are made by adding solid copper(II) carbonate to dilute hydrochloric acid until no more dissolves.

Which process is used to obtain pure copper(II) chloride crystals from the mixture?

- A distillation of the mixture
- **B** evaporation of the mixture
- **C** filtration followed by drying of the residue
- **D** filtration followed by evaporation of the filtrate
- **20** Moving from right to left across the Periodic Table the elements show increasing metallic character.

Why does metallic character increase from right to left across a period?

- **A** The atoms have more electrons in their outer shells.
- **B** The atoms more readily gain electrons to form negative ions.
- **C** The atoms more readily lose electrons to form positive ions.
- **D** The charge on the nucleus of each atom gets larger.
- **21** A period of the Periodic Table is shown.

group	I	П	III	IV	٧	VI	VII	VIII
element	R	s	Т	٧	W	X	Υ	Z

The letters are not their chemical symbols.

Which statement is correct?

- A Element R does not conduct electricity.
- **B** Elements R and Y react together to form an ionic compound.
- **C** Element Z exists as a diatomic molecule.
- **D** Element Z reacts with element T.

22 Group VII elements show trends in their physical properties going down the group.

element	Х	Y	Z
chlorine	-101	-34	0.003
bromine	– 7	59	3.1
iodine	114	184	4.9

Which row shows the missing headings for the properties in the table?

	X	Y	Z
Α	density in g/cm ³	boiling point in °C	melting point in °C
В	melting point in °C	boiling point in °C	density in g/cm ³
С	boiling point in °C	density in g/cm ³	melting point in °C
D	boiling point in °C	melting point in °C	density in g/cm ³

23 Some properties of two metals, G and H, are shown.

metal G	metal H	
the formula of the chloride is GC1	high melting point	
reacts with cold water	has more than one oxidation state	

Which row about metals G and H is correct?

	metal G	metal H
Α	in Group I of the Periodic Table	in Group II of the Periodic Table
В	in Group I of the Periodic Table	transition metal
С	in Group II of the Periodic Table	in Group I of the Periodic Table
D	in Group II of the Periodic Table	transition metal

24 The noble gases are in Group VIII of the Periodic Table.

Which statement explains why noble gases are unreactive?

- A They all have eight electrons in their outer shells.
- **B** They all have full outer shells.
- **C** They are all gases.
- **D** They are all monoatomic.

		3				
25	Wh	h statement is correct for all metals?				
	A	hey conduct electricity when molten.				
	В	They gain electrons when they form ions.				
	С	They have a low density.				
	D	hey have a low melting point.				
26	Wh	h statement about the extraction of metals is correct?				
	Α	Aluminium is extracted from the ore bauxite by electrolysis.				
	В	Aluminium is extracted from the ore hematite by electrolysis.				
	С	ron is extracted from the ore bauxite by electrolysis.				
	D	ron is extracted from the ore hematite by electrolysis.				
27	Alu	inium objects do not need protection from corrosion.				
	Iror	objects must be protected from corrosion.				
	Wh	ich statement explains why aluminium resists corrosion?				
	Α	Aluminium does not form ions easily.				
	В	Aluminium does not react with water or air.				
	С	Aluminium has a protective oxide layer.				
	D	Aluminium is below iron in the reactivity series.				
28	Wh	h statements about the thermal decomposition of copper(II) nitrate are correct?				
		1 A brown gas is given off.				
		2 A gas which relights a glowing splint is given off.				
		3 The solid residue is an acidic oxide.				
	A	only B 1 and 2 C 1 and 3 D 2 and 3				
	A	only Brand 2 Crand 3 B 2 and 3				

29 Covering iron with zinc prevents the iron from rusting even when the zinc is scratched.

Covering iron with tin prevents the iron from rusting, but when the tin is scratched the iron underneath starts to rust.

Which statement is correct?

- **A** Both tin and zinc prevent iron from rusting by sacrificial protection.
- **B** Both tin and zinc prevent iron from rusting by stopping water and carbon dioxide reaching the iron.
- C Tin is more reactive than iron and prevents iron from rusting until it is scratched.
- **D** Zinc loses electrons more easily than iron and prevents iron from rusting by corroding first.
- 30 Which statements about the Haber process are correct?
 - 1 One of the raw materials is extracted from liquid air by fractional distillation.
 - 2 One of the raw materials is produced by the reaction of steam and methane.
 - 3 The catalyst for the Haber process is vanadium(V) oxide.
 - **A** 1 only **B** 1 and 2 only **C** 2 and 3 only **D** 1, 2 and 3
- 31 Which raw material is used in the Contact process?
 - A air
 - **B** ammonia
 - C carbon
 - **D** nitrogen
- **32** Lime (calcium oxide) is used to treat waste water from a factory.

Which substance is removed by the lime?

- A ammonia
- B sodium chloride
- C sodium hydroxide
- D sulfuric acid

33 An alkane molecule of molecular formula C_8H_{18} undergoes cracking. The equation for the reaction is shown.

$$C_8H_{18} \,\rightarrow\, Q\,\,+\,\,2R$$

Substance R has two carbon atoms per molecule and decolourises aqueous bromine.

What is substance Q?

- A butane
- **B** butene
- **C** ethane
- **D** ethene
- **34** Fuel X produces carbon dioxide and water when it is burned in air. So does fuel Y.

What could X and Y be?

	Х	Y
Α	С	H ₂
В	С	C ₈ H ₁₈
С	CH₄	H_2
D	CH₄	C ₈ H ₁₈

- 35 Which molecule contains only single covalent bonds?
 - **A** propane
 - B propanoic acid
 - **C** propene
 - D propyl propanoate
- **36** Alkanes react with chlorine to form chloroalkanes.

Which statement about the reactions of alkanes with chlorine is correct?

- A Alkanes react with chlorine by addition.
- **B** The gaseous product turns red litmus blue.
- **C** The chlorine atom in chloroethane is covalently bonded.
- **D** The general formula of the chloroalkanes is $C_nH_{2n}Cl$.

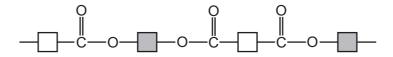
37 Part of the structure of a very large molecule is shown.

Which term describes the small unit used to make this molecule?

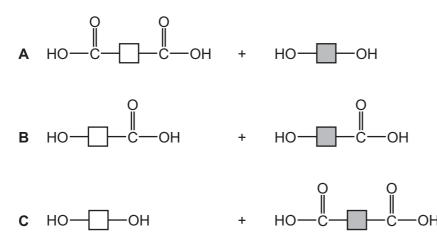
- **A** hydrocarbon
- **B** monomer
- C polymer
- **D** saturated

38 Propene reacts with steam to form propanol.

$$C_3H_6(g) + H_2O(g) \rightarrow C_3H_7OH(g)$$


Which type of reaction takes place?

- **A** addition
- **B** condensation
- **C** oxidation
- **D** substitution


39 Which statement about aqueous ethanoic acid is correct?

- **A** It reacts with magnesium to produce a salt and hydrogen.
- **B** It reacts with sodium hydroxide to produce a salt and hydrogen.
- **C** It reacts with ammonium salts to produce ammonia.
- **D** It turns red litmus blue.

40 The diagram shows the partial structure of *Terylene*.

From which pair of compounds is it made?

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2 :	Не	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	IIA				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	Αţ	astatine -			
					8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	molod –	116	^	livermorium -
	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	>				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium
	≡				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	ပ	cadmium 112	80	Нg	mercury 201	112	S	copernicium -
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group											28	z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Gro											27	ဝိ	cobalt 59	45	牊	rhodium 103	77	Ir	iridium 192	109	Mt	meitnerium -
		F :	I	hydrogen 1							26	Ьe	iron 56	44		-		SO	osmium 190	108	Hs	hassium –
											25	M	manganese 55	43	ပ	technetium -	75	Re	rhenium 186			bohrium –
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	В	dubnium –
						ato	rek				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium —
											21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89-103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium -
	_				ဇ	=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	S	caesium 133	87	Ŧ	francium -

7.1 Lu	lutetium 175	103	۲	lawrencium	ı
° A					
69 Tm	thulium 169	101	Md	mendelevium	ı
es Fr	erbium 167	100	Fm	fermium	ı
67 Ho	holmium 165	66	Es	einsteinium	1
°6 Dy	dysprosium 163	86	ర్	califomium	I
65 Tb	terbium 159	26	益	berkelium	I
Gd Gd	gadolinium 157	96	Cm	curium	I
e3 Eu	europium 152	98	Am	americium	I
Sm	samarium 150	64	Pn	plutonium	I
Pm	promethium -	93	ď	neptunium	I
9 P N	neodymium 144	92	⊃	uranium	738
59 Pr	praseodymium 141	91	Ра	protactinium	231
Se O	cerium 140	06	Ļ	thorium	232
57 La	lanthanum 139	68	Ac	actinium	I
lanthanoids			actinoids		

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).