

Cambridge IGCSE[™]

CHEMISTRY 0620/11

Paper 1 Multiple Choice (Core)

May/June 2023

45 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

1 The diagram shows the result of dropping a purple crystal into water.

Which processes take place in this experiment?

	chemical reaction	diffusing	dissolving
Α	✓	✓	X
В	✓	X	X
С	X	X	✓
D	X	✓	✓

2 Which row about elements, mixtures and compounds is correct?

	metallic element	non-metallic element	mixture	compound
Α	copper	methane	brass	sulfur
В	brass	sulfur	copper	methane
С	copper	sulfur	brass	methane
D	brass	methane	copper	sulfur

3 What are the relative charge and relative mass of an electron?

	relative charge	relative mass
Α	0	1
В	0	<u>1</u> 2000
С	– 1	1
D	– 1	<u>1</u> 2000

4 The atomic structures of four particles, W, X, Y and Z, are shown.

	electrons	neutrons	protons
W	2	2	2
Х	2	2	3
Υ	2	3	2
Z	3	2	3

Which particles are isotopes of the same element?

- **A** W and X
- **B** W and Y
- **C** X and Y
- **D** X and Z

5 Which row shows the properties of an ionic compound?

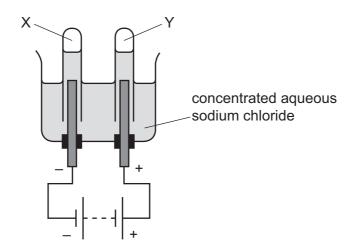
	electrical conductivity of solid	melting point /°C
Α	good	98
В	good	3652
С	poor	78
D	poor	801

6 Which row describes the formation of single covalent bonds in methane?

A	atoms share a pair of electrons	both atoms gain a noble gas electronic structure
В	atoms share a pair of electrons	both atoms have the same number of electrons in their outer shell
С	electrons are transferred from one atom to another	both atoms gain a noble gas electronic structure
D	electrons are transferred from one atom to another	both atoms have the same number of electrons in their outer shell

7 Which equation represents the neutralisation of nitric acid using sodium hydroxide?

A NaOH(aq) + HNO₃(aq) \rightarrow NaNO₃(aq) + H₂O(I)

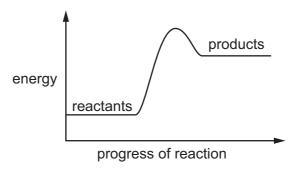

B NaOH(aq) + HNO₃(aq) \rightarrow NaNO₃(I) + H₂O(I)

C NaOH(I) + HNO₃(I) \rightarrow NaNO₃(I) + H₂O(aq)

D NaOH(I) + HNO₃(I) \rightarrow NaNO₃(I) + H₂O(I)

- 8 What is the relative formula mass of ammonium nitrate, NH₄NO₃?
 - **A** 80
- **B** 108
- **C** 122
- **D** 150
- **9** Concentrated aqueous sodium chloride is electrolysed using inert electrodes.

Gases X and Y are produced at the electrodes shown.



What are X and Y?

	Х	Y
Α	chlorine	hydrogen
В	hydrogen	chlorine
С	hydrogen	oxygen
D	oxygen	hydrogen

- 10 Which statement about hydrogen fuel cells is correct?
 - A Hydrogen fuel cells do not produce carbon dioxide.
 - **B** Hydrogen fuel cells do not need oxygen.
 - **C** The waste from a hydrogen fuel cell is an acidic gas.
 - **D** The reaction in a fuel cell is endothermic.

11 A reaction pathway diagram is shown.

Which statement about this reaction is correct?

- **A** The reaction rate increases during the reaction.
- **B** The reaction is endothermic.
- **C** The reaction transfers thermal energy to the surroundings.
- **D** The temperature of the surroundings increases.

12 Lumps of calcium carbonate react with dilute hydrochloric acid as shown.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

Which change in conditions decreases the rate of the reaction?

- A increasing the concentration of the acid
- **B** increasing the volume of the acid
- **C** increasing the size of the lumps of calcium carbonate
- **D** increasing the temperature
- **13** Solid copper(II) sulfate exists in two different forms, anhydrous and hydrated.

One of these forms is blue and the other is white.

The change between these two forms is reversible.

What is the blue form and how is the change from the blue form to the white form brought about?

	blue form	change to white form
Α	anhydrous	add water
В	anhydrous	heat
С	hydrated	add water
D	hydrated	heat

14 Four redox equations and statements about the equations are shown.

	reaction	statement
1	$C + O_2 \rightarrow CO_2$	carbon is oxidised
2	$CO_2 + C \rightarrow 2CO$	carbon dioxide is oxidised
3	$CO_2 + C \rightarrow 2CO$	carbon is oxidised
4	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	iron(III) oxide is oxidised

Which statements about the equations are correct?

- **A** 1 and 2
- **B** 1 and 3 **C** 2 and 4
- **D** 3 and 4

15 Sodium hydroxide forms an alkaline solution with a pH of 14.

Which indicator turns yellow when added to this solution?

- A litmus
- **B** methyl orange
- C thymolphthalein
- **D** universal indicator

16 Which row identifies an acidic oxide and a basic oxide?

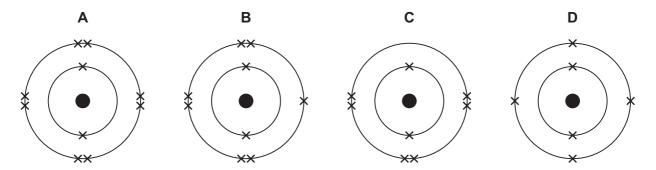
	acidic oxide	basic oxide
Α	CaO	CuO
В	CaO	SO ₂
С	CO ₂	CuO
D	CO ₂	SO ₂

17 A student makes aqueous copper(II) chloride by adding excess copper(II) carbonate to dilute hydrochloric acid.

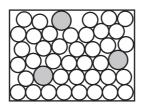
What is the next step in the method in the formation of solid copper(II) chloride?

- A crystallisation
- evaporation В
- C filtration
- titration

- 18 Which statements about the trends across a period of the Periodic Table are correct?
 - 1 Aluminium is more metallic than sodium.
 - 2 Beryllium is more metallic than carbon.
 - 3 Boron is more metallic than lithium.
 - 4 Magnesium is more metallic than silicon.
 - **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 4
- **D** 3 and 4
- 19 Which row shows the trend in melting point, density and reactivity as Group I is descended?


	melting point	density	reactivity
A	increases	decreases	decreases
В	decreases	increases	increases
С	increases	decreases	increases
D	decreases	increases	decreases

20 Which row describes a similarity and a difference between chlorine and bromine?


	similarity	difference
A	both are gases at room temperature and pressure	chlorine and bromine have different colours
В	both exist as diatomic molecules	chlorine is more dense than bromine
С	both have atoms with seven outer-shell electrons	only bromine will react with aqueous sodium chloride
D	both react with aqueous potassium iodide	chlorine is more reactive than bromine

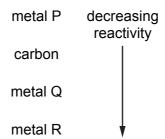
- 21 Which statement describes transition elements?
 - A They have high densities and high melting points.
 - **B** They have high densities and low melting points.
 - **C** They have low densities and high melting points.
 - **D** They have low densities and low melting points.

22 Which diagram shows the electronic structure of a noble gas?

- 23 Which gas is made when powdered zinc is added to dilute hydrochloric acid?
 - A carbon dioxide
 - **B** chlorine
 - C hydrogen
 - **D** oxygen
- 24 Which metal is used in aircraft manufacture because it has a low density?
 - **A** aluminium
 - **B** copper
 - C iron
 - **D** potassium
- **25** The diagram represents the structure of a solid.

Which solids does the diagram represent?

	brass	graphite	sodium chloride
Α	✓	✓	X
В	✓	X	X
С	X	✓	✓
D	X	X	✓


26 Three students, X, Y and Z, are told that solid P reacts with dilute acids and also conducts electricity.

The table shows the students' suggestions about the identity of P.

Х	Y	Z		
copper	iron	graphite		

Which students are correct?

- **A** X, Y and Z
- **B** X only
- **C** Y only
- **D** Z only
- 27 Which substances in the air are needed for iron to rust?
 - A oxygen and water
 - B oxygen only
 - C water and carbon dioxide
 - **D** water only
- **28** Part of the reactivity series of metals is shown.

Which row shows how each metal is extracted from its ore?

	metal P	metal R	
Α	electrolysis of molten ore	electrolysis of molten ore	heating with carbon
В	heating with carbon	electrolysis of molten ore	electrolysis of molten ore
С	heating with carbon	heating with carbon	electrolysis of molten ore
D	electrolysis of molten ore	heating with carbon	heating with carbon

29 Several processes are used to treat domestic water.

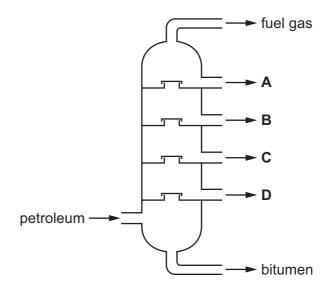
Which row identifies a reason for the given process?

	process	reason
Α	chlorination	removes impurities
В	filtration	removes insoluble solids
С	sedimentation	removes soluble solids
D	use of carbon	kills bacteria

- 30 Which pair of compounds make an NPK fertiliser?
 - A ammonium sulfate and potassium phosphate
 - **B** calcium hydroxide and ammonium nitrate
 - **C** calcium phosphate and potassium chloride
 - **D** potassium nitrate and ammonium sulfate
- **31** Some information about gas X is listed.
 - It is not present in clean, dry air.
 - It is not a cause of respiratory problems.
 - It is responsible for global warming.

What is X?

- A carbon dioxide
- B carbon monoxide
- **C** methane
- D nitrogen dioxide


32 Part of the structure of a molecule of vitamin A is shown.

Which statements about this part of the structure are correct?

- 1 It is saturated.
- 2 There are two alkene groups.
- 3 The structure shows a carboxylic acid.
- **A** 1 and 3
- **B** 1 only
- **C** 2 and 3
- **D** 2 only

33 The fractional distillation of petroleum is shown.

Which fraction contains hydrocarbons with the longest chain length?

34 Which equation represents the cracking of an alkane?

$$\mathbf{A} \quad 3C_2H_4 \rightarrow C_6H_{12}$$

B
$$C_6H_{12} + H_2 \rightarrow C_6H_{14}$$

$$\textbf{C} \quad C_6H_{14} \,\rightarrow\, 6C \,\, + \,\, 7H_2$$

D
$$C_6H_{14} \rightarrow C_2H_4 + C_4H_{10}$$

35 Which statements about ethanol are correct?

- 1 Ethanol is made by reacting steam with ethene at 300 °C.
- 2 Ethanol is made by fermentation at 55 °C.
- 3 Ethanol burns to produce carbon dioxide and water.
- 4 Ethanol contains a carbon–carbon double bond.

1 and 2

B 1 and 3

C 2 and 3

D 3 and 4

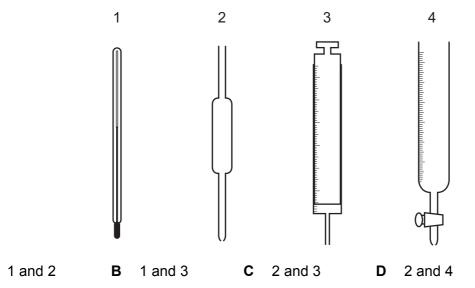
36 Which substances react with aqueous ethanoic acid to form a gas?

- 1 magnesium
- 2 magnesium carbonate
- 3 magnesium oxide

1, 2 and 3

B 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

37 In reaction R, 2000 molecules of CH₂=CH₂ react to form a single molecule X only.


2000
$$CH_2$$
= $CH_2 \rightarrow X$

Which terms describe reaction R, CH₂=CH₂ and X?

	reaction R	CH ₂ =CH ₂	Х
Α	addition	monomer	polymer
В	addition	polymer	monomer
С	substitution	monomer	polymer
D	substitution	polymer	monomer

38 The concentration of acids and alkalis can be determined by titration.

Which pieces of equipment are needed to perform a titration?

- 39 Which process is used to produce drinking water from sea water?
 - A crystallisation
 - **B** distillation
 - **C** filtration
 - **D** chlorination
- **40** The results of two separate tests on a white solid X are shown.

test	result				
add dilute nitric acid	effervescence				
add aqueous sodium hydroxide and warm	a gas is formed which turns damp red litmus paper blue				

What is X?

- A aluminium carbonate
- B aluminium nitrate
- C ammonium carbonate
- **D** ammonium nitrate

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	₹	д Т	helium 4	10	Se	neon 20	18	Ā	argon 40	36	첫	krypton 84	54	×	xenon 131	98	R	radon	118	Og	oganesson -	
	\equiv			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -	117	<u>S</u>	tennessine -	
	5				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Тe	tellurium 128	84	Ъо	polonium –	116	_	livermorium —
	>			7	Z	nitrogen 14	15	凸	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium -	
	≥			9	ပ	carbon 12	41	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium -	
	≡			2	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	п	indium 115	81	<i>1</i> 1	thallium 204	113	R	nihonium —	
										30	Zn	zinc 65	48	පි	cadmium 112	80	Р	mercury 201	112	ű	copernicium —	
										29	Co	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -	
Group										28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -	
Q				1						27	ပိ	cobalt 59	45	格	rhodium 103	77	ľ	iridium 192	109	Μţ	meitnerium -	
		- I	hydrogen 1											Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium	
							1			25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —	
				_	pol	ass						chromium 52		Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -	
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	g	niobium 93	73	<u>Б</u>	tantalum 181	105	Op	dubnium -	
					atc	- Le				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium —	
										21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium	
	_			ဇ	=	lithium 7	7	Na	sodium 23	19	×	potassium 39	37	S S	rubidium 85	55	S	caesium 133	87	ቷ	francium -	

Lu Lu	lutetium 175	103	۲	lawrencium	1
°° X	ytterbium 173	102	%	nobelium	_
e9 Tm	thulium 169	101	Md	mendelevium	_
₈₈ <u>п</u>	erbium 167	100	Fm	ferminm	ı
67 H	holmium 165	66	Es	einsteinium	-
_® 20	dysprosium 163	86	ర్	califomium	ı
es Tb	terbium 159	26	益	berkelium	-
64 Gd	gadolinium 157	96	Cm	curium	I
e3 Eu	europium 152	92	Am	americium	I
Sm	samarium 150	94	Pu	plutonium	I
e1 Pm	promethium -	93	dN	neptunium	ı
[©] 2	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ра	protactinium	231
Ce SS	cerium 140	06	H	thorium	232
57 La	lanthanum 139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).