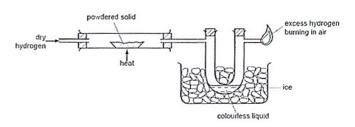
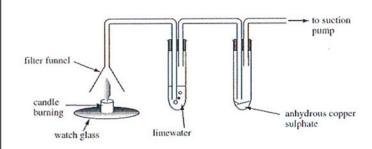

ZNOTES.ORG

UPDATED TO 2020-21 SYLLABUS

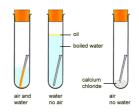

CAIE IGCSE CHEMISTRY (0620)

1. Apparatus

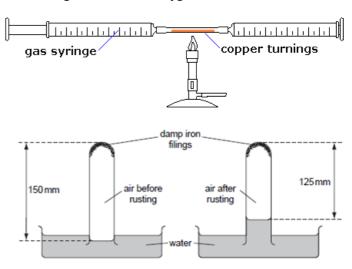


2. Experiments

• Reducing Copper(III) Oxide to Copper

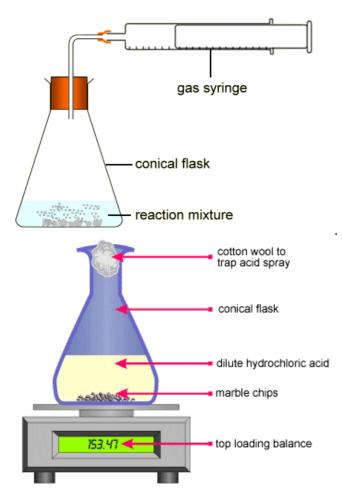


• Testing products of combustion:

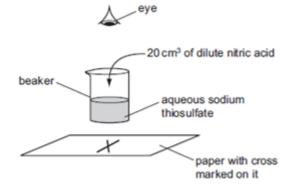


2.2. Experiments

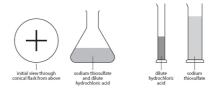
• Showing that oxygen and water is needed for rusting iron


• Showing that air is 21% Oxygen

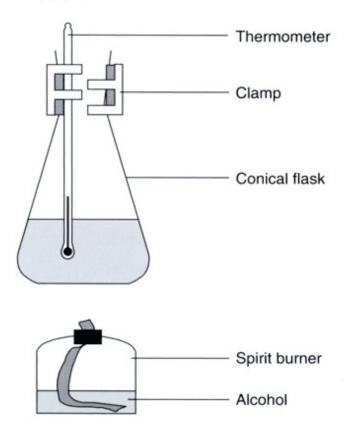
3. Rates of Reaction


3.1. Testing factors affecting rate of reaction

- Different temperature acid
- Different size of particle/reactant
- Concentration of acid

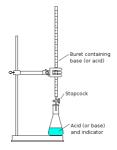

3.2. Timing

- Time how long it takes for the cross to disappear from view
- You can change the temperature and concentration of acid used


3.3. Keep constant:

- · Diameter of beaker
- The Cross
- Volume

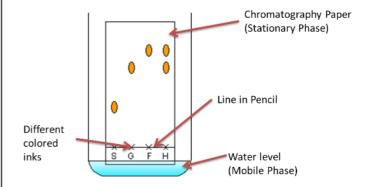
4. Energy in Alcohol


- Find the amount of energy given when an alcohol is burnt:
- You need to know:
 - · Mass of water
 - Change in mass of burner containing alcohol
 - Specific heat capacity of water
 - Temperature change of water
 - The molecular mass of the alcohol
- $\frac{\text{Change in mass}}{\text{Molecular mass}} = \text{Number of moles burnt}$
- Change in temperature \times Mass of water \times SHC of water = Energy
- $\frac{\text{Energy}}{\text{Moles burnt}} = \text{Amount of energy per mole (J/mol)}$

5. Finding Concentration

CAIE IGCSE CHEMISTRY (0620)

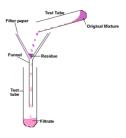
- Acid and base titration to find the concentration of a solution:
- Measure volume of acid then pour into conical flask
- Record initial volume of base in burette
- Slowly add base from burette, stirring each time
- When indicator neutral, record final volume of base
- · Find amount of bas used: Final Initial
- Find moles of base used by volume×concentration
- Use balanced equation to find how many moles of acid are needed to neutralize the base
- $ext{Number of moles of Acid Needed} = Concentration of Acid} \ ext{Volume of Acid Used}$


6. Flame Tests

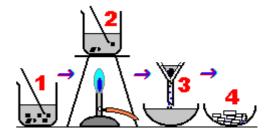
- Lithium = Red
- Sodium = Yellow
- Potassium = Lilac
- Iron = Gold
- Magnesium = Bright White
- Source of errors for flame tests:
 - The test cannot detect low concentrations of most ions
 - Brightness of the flames varies from one sample to another.
 - Impurities or contaminants affect the test results.
 - The test cannot differentiate between all elements or compounds

7. Chromatography

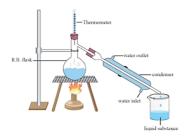
- Principle: Difference in solubility separates different pigments
 - Drop substance to center of filter paper and allow it to dry
 - Drop water on substance, one drop at a time
 - Paper + rings = chromatogram.
- **Stationary phase:** material on which the separation takes place
- Mobile phase: mixture you want to separate, dissolved in a solvent.
- Interpreting simple chromatograms:
 - Number of rings/dots = number of substances
 - If two dots travel the same distance up the paper they are the same substance.
- You can calculate the Rf value to identify a substance, given by the formula:
- $Rf\ Value = \frac{Distance\ moved\ by\ solute}{Distance\ moved\ by\ solvent}$


- To make colorless substances visible
 - Dry chromatogram in an oven
 - Spray it with a locating agent
 - Heat it for 10 minutes in the oven

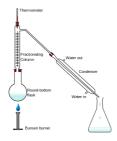
8. Separation Methods


Filtration

- Mixture goes in a funnel with filter paper, into a flask.
- · Residue is insoluble and filtrate goes through


Crystallization

- Some water in the solution is evaporated so solution becomes more concentrated.
- Solution is left to cool and crystallise.
- Crystals are filtered to remove solvent.

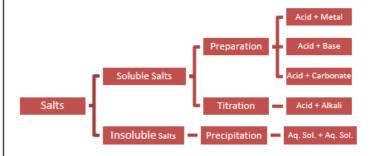

8.2. Simple distillation:

- Impure liquid is heated
- It boils, and steam rises into the condenser
- · Impurities are left behind
- Condenser is cold so steam condenses to the pure liquid and it drops into the beaker

8.3. Fractional distillation:

- Removes a liquid from a mixture of liquids, because liquids have different b.p.s
- Mixture is heated to evaporate substance with lowest b.p.
- some of the other liquid(s) will evaporate too.
- Beads are heated to boiling point of lowest substance, so that substance being removed cannot condense on beads.
- Other substances continue to condense and will drip back into the flask
- The beaker can be changed after every fraction.

8.4. Separating mixture of two solids:


- Can be done by dissolving one in an appropriate solvent
- Then filter one and extract other from solution by evaporation
- If one solid is magnetic, can use a magnet e.g. sand and iron

Solvent	lt dissolves
Water	Some salts, sugar
White spirit	Gloss paint
Propanone	Grease, nail polish
Ethanol	Glues, printing inks, scented substances, chlorophyll

8.5. Choosing a suitable method:

Method of separation	Used to separate
Filtration	A solid from a liquid
Evaporation	A solid from a solution
Crystallization	A solid from a solution
Simple Distillation	A solvent from a solution
Fractional Distillation	Liquids from each other
Chromatography	Different substances from a solution

9. Making Salts

9.1. Starting with a metal:

- Add excess metal to an acid
- When bubbling (hydrogen) stops the reaction is done
- Filter off excess metal

Starting with an insoluble base:

- Add insoluble base to acid and heat gently, it will dissolve
- Keep adding until no more dissolves (reaction is done)
- Filter out the insoluble (excess) base

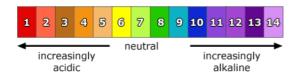
9.2. Titration:

- Put a certain amount alkali in a flask and add phenolphthalein
- Add acid from a burette, stirring, until it goes colourless
- Find out how much acid you used and repeat, to be more accurate
- Evaporate water from neutral solution

Precipitation:

- Mix the two soluble salts, so they react together
- Filter the mixture to separate the products produced (soluble and insoluble salt produced)
- Wash the insoluble salt on the filter paper
- Dry the insoluble salt in a warm oven

10. Salts and Indicators


10.1. Solubility of salts

Soluble Salts	Insoluble Salts	
All sodium, potassium and ammonium salts	The rest	
All nitrates	N/A	
Chlorides	Except silver and lead	
Sulphates	Except barium, lead and calcium	
Potassium, sodium and ammonium carbonates	All other carbonates	

10.2. Indicators:

Indicator	Color in acid	Color in alkaline
Phenolphthalein	Colorless	Pink
Methyl orange	Red	Yellow
Methyl red	Red	Yellow
Red litmus	Red	Blue
Blue litmus	Red	Blue

10.3. pH Scale:

11. Test for Anions and Cations

Cation	Sodium Hydroxide	Ammonia	
Aluminum (Al ³⁺)	Soluble white ppt.	White ppt.	
Ammonium (NH ₄ ⁺)	Ammonium gas - damp red litmus turns blue	N/A	
Calcium (Ca ²⁺)	White ppt.	No ppt.	
Copper (Cu ²⁺)	Light blue ppt.	Light blue soluble ppt.	
Iron(II) (Fe ²⁺)	Green ppt.	Green ppt.	
Iron(III) (Fe ³⁺)	Red-brown ppt.	Red-brown ppt.	
Zinc (Zn ²⁺)	White soluble ppt.	White soluble ppt.	

Anion	Test	Test result
Carbonate (CO ₃ ²⁻)	Add dilute nitric acid	Limewater goes cloudy
Chloride (Cl ⁻)	A Lil attack a state of	White ppt.
Bromide (Br ⁻)	Add nitric acid, then aqueous silver nitrate	Cream ppt.
lodide (l⁻)	aqueous silver riiti ute	Yellow ppt.
Nitrate (NO ₃ -)	Add aqueous sodium hydroxide then add aluminum	Gas produced turns damp red litmus paper blue
Sulphate (SO ₄ ²⁻)	Add nitric acid, then add aqueous barium nitrate	White ppt.

12. Other Tests

Gas	Test and test result

Gas	Test and test result	
Ammonia (NH ₃)	Damp red litmus paper turns blue	
Carbon dioxide (CO ₂)	Bubble gas through limewater - from colorless to cloudy	
Chlorine (Cl ₂)	Bleaches red/blue litmus paper	
Hydrogen (H ₂)	Place lighted splint, squeaky pop	
Oxygen (O ₂)	Place glowing splint, splint relights	

Substance	Test and test result	
Water	White anhydrous copper (II) sulphate crystals turns blue	
	Blue cobalt chloride paper turns pink	
Alkene	Add to bromine water; from orange to colourless	
Alkane	Add to bromine water; remains orange	
Acid	Blue litmus paper turns red	
Acid	Add a metal carbonate; bubbles of CO ₂	
Base	Red litmus paper turns blue	

13. Preparing Gases in the Lab

To make	Place in flask:	Add	Reaction
CO ₂	CaCO ₃ (marble chips)	Dilute HCl	$CaCO_3(s) + HCl(aq) \rightarrow$ $CaCl_2(aq) + H_2O(l) +$ $CO_2(g)$
Cl ₂	Manganese (IV) oxide (as an oxidising agent)	Conc. HCl	2HCL(aq) + [O] → $H_2O(I) + CI_2(g)$
H ₂	Pieces of zinc	Dilute HCl	$Zn(s) + HCL(aq) \rightarrow$ $ZnCl_2(aq) + H_2(g)$
02	Manganese (IV) oxide (as a catalyst)	Hydrogen peroxide	$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$

14. Collecting Gases

Method	Downward displacement of air	Upward displacement of air	Over water	Gas syringe
Use when	Gas more dense than air	Gas less dense than air	Gas is sparingly soluble in water	To measure the volume

CAIE IGCSE CHEMISTRY (0620)

Method	Downward displacement of air	Upward displacement of air	Over water	Gas syringe
Apparatus			gas of low water solubility	20 40 40 100
Examples	Carbon- dioxide, chlorine, sulphur dioxide, hydrogen chloride	Ammonia, hydrogen	Carbon dioxide, hydrogen, oxygen	Any gas

CAIE IGCSEChemistry (0620)

Copyright 2022 by ZNotes

These notes have been created by ZNotes team for the 2020-21 syllabus

This website and its content is copyright of ZNotes Foundation - © ZNotes Foundation 2022. All rights reserved. The document contains images and excerpts of text from educational resources available on the internet and printed books. If you are the owner of such media, test or visual, utilized in this document and do not accept its usage then we urge you to contact us and we would immediately replace said media.

No part of this document may be copied or re-uploaded to another website without the express, written permission of the copyright owner. Under no conditions may this document be distributed under the name of false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain a property available to all at no cost. It is current freely available from the website www.znotes.org

This work is licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International License

This work is licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 international License.