Acids, bases and salts – 2019 June

1. 0620/41/M/J/19/No.4

	Ethanoic acid is a weak acid and hydrochloric acid is a strong acid. Both ethanoic acid and hydrochloric acid dissociate in aqueous solution.				
(a)	(i)	Define the term acid.			
		[1]			
	(ii)	The chemical equation shows the changes which occur when the strong acid, hydrochloric acid, is added to water.			
		$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$			
		Complete the chemical equation to show the changes which occur when the weak acid, ethanoic acid, is added to water.			
		CH ₃ COOH(aq)[2]			
(b)	a w	tudent does experiments to show that hydrochloric acid is a strong acid and ethanoic acid is eak acid. The student adds an excess of hydrochloric acid and an excess of ethanoic acid separate samples of lumps of calcium carbonate.			
		y the identity of the acid is changed between the experiments. All other conditions are kept same.			
	(i)	State two observations which would show that hydrochloric acid is a stronger acid than ethanoic acid.			
		2			
		[2]			
	(ii)	The student uses the same size container and checks that the pressure is the same for each experiment.			
		State three other conditions which must be kept the same to ensure fair testing.			
		1			
		2			
		3[3]			

(c) Hydrochloric acid produces salts called chlorides.

Magnesium carbonate reacts with hydrochloric acid to produce magnesium chloride.

$$MgCO_3 + 2HCl \rightarrow MgCl_2 + H_2O + CO_2$$

A student used 50.00 cm³ of 2.00 mol/dm³ hydrochloric acid in an experiment to produce magnesium chloride.

Calculate the mass, in g, of magnesium carbonate needed to react exactly with 50.00 cm³ of 2.00 mol/dm³ hydrochloric acid using the following steps.

• Calculate the number of moles of HCl present in 50.00 cm³ of 2.00 mol/dm³ HCl.

 Determine the number of moles of MgCO₃ which would react with 50.00 cm³ of 2.00 mol/dm³ HCl.

Calculate the relative formula mass, M_p of MgCO₃.

$$M_{\rm r}$$
 of MgCO₃ =

• Calculate the mass of MgCO₃ needed to react exactly with 50.00 cm³ of 2.00 mol/dm³ HC*l*.

[4]

The student filters the mixture and rinses the resid	ue.
(i) Why does the student add an excess of mag	nesium carbonate?
	[1]
(ii) Why does the student rinse the residue?	
	[1]
(iii) Describe how the student would obtain pure filtrate.	
	. 0
	[3]
(e) Silver chloride, AgC l, is insoluble. It can be made to barium chloride and a suitable aqueous silver salt(i) What is meant by the term <i>precipitate</i>?	w i i i i i i i i i i i i i i i i i i i
	[2]
(ii) Name a suitable silver salt to use to prepare so Complete the chemical equation to show the aqueous barium chloride and the silver salt you	formation of insoluble silver chloride from
name of a suitable silver salt	
$BaCl_2 \; + \; \dots \dots \to \; \dots$	
	[3]
	[Total: 22]

(d) A student prepares crystals of magnesium chloride by adding an excess of magnesium carbonate to 50.00 cm³ of 2.00 mol/dm³ hydrochloric acid.

2.	0620 Aq ւ	0620/32/F/M/19/No.5 Aqueous sodium hydroxide is a base.				
	(a)	Describe the reaction of aqueous sodium hydroxide with:				
		a named acid				
		ammonium salts				
		a named indicator.				
	(b)	Ammonia is a soluble base. [5]				
		Which one of the following pH values could be the pH of aqueous ammonia? Draw a circle around the correct answer.				
		pH 1 pH 5 pH 7 pH 10 [1]				
	(c)	Ammonia is used in the manufacture of some fertilisers.				
Which two of these compounds are present in fertilisers? Tick two boxes.						
		copper(II) oxide				
		potassium chloride				
		sodium phosphate				
		strontium fluoride				
		sulfur dioxide [2]				

(d) Bacteria in the soil are able to convert ammonium compounds into oxides of nitrogen. The oxides of nitrogen can escape into the atmosphere.					
((i)	State one other source of oxides of nitrogen in the atmosphere.			
		[1]			
(i	ii)	State one effect of oxides of nitrogen on health.			
		[1]			
(ii	ii)	Oxides of nitrogen are greenhouse gases which contribute to climate change.			
		Give the name of one other greenhouse gas which makes a major contribution to climate change.			
		[1]			
		Palpacalitila Pa			