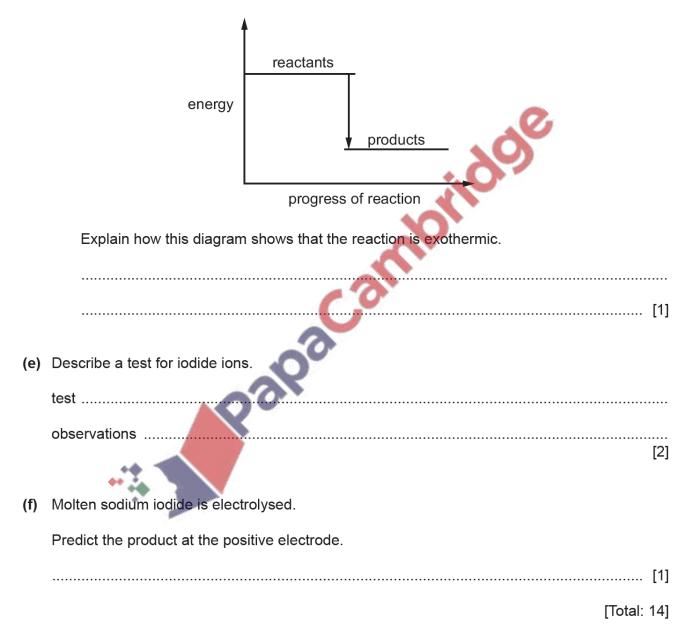

<u> The Periodic Table – 2019 June</u>

- **1.** 0620/31/M/J/19/No.4 This guestion is about iodine and compounds of iodine.
 - (a) Use the kinetic particle model to describe the separation between the molecules and the type of motion of the molecules in:


(ii) Explain, in terms of the reactivity of the halogens, why aqueous iodine does **not** react with aqueous potassium chloride.

- (d) lodine reacts with aqueous sodium thiosulfate, Na₂S₂O₃.
 - (i) Balance the chemical equation for this reaction.

$$\dots Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + \dots NaI$$
[2]

(ii) The energy level diagram for this reaction is shown.

2. 0620/32/M/J/19/No.5 This question is about bromine and compounds of bromine.

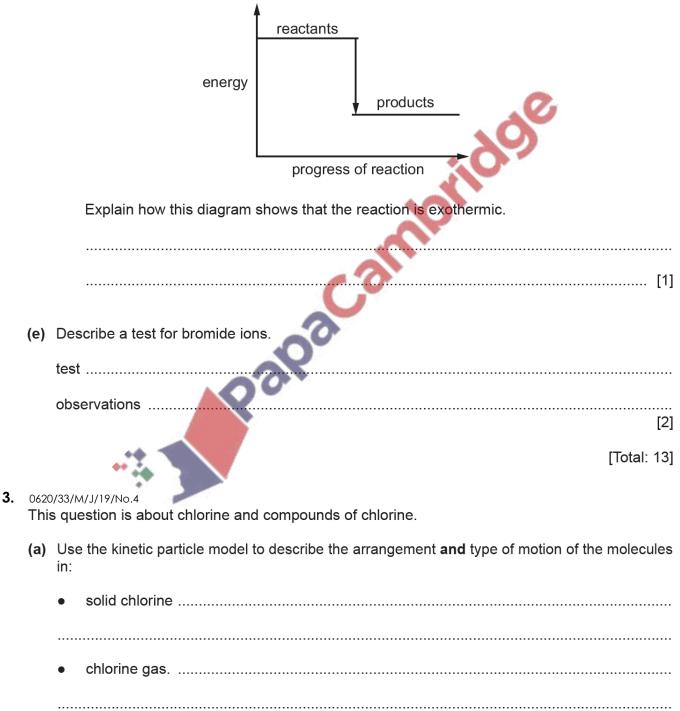
- (a) Use the kinetic particle model to describe the arrangement **and** type of motion of the molecules in:
 - liquid bromine
 bromine gas.
 - [4]
- (b) The graph shows how the volume of bromine gas changes with temperature. The pressure is kept constant.

volume of bromine gas temperature Describe how the volume of the bromine gas changes with temperature.

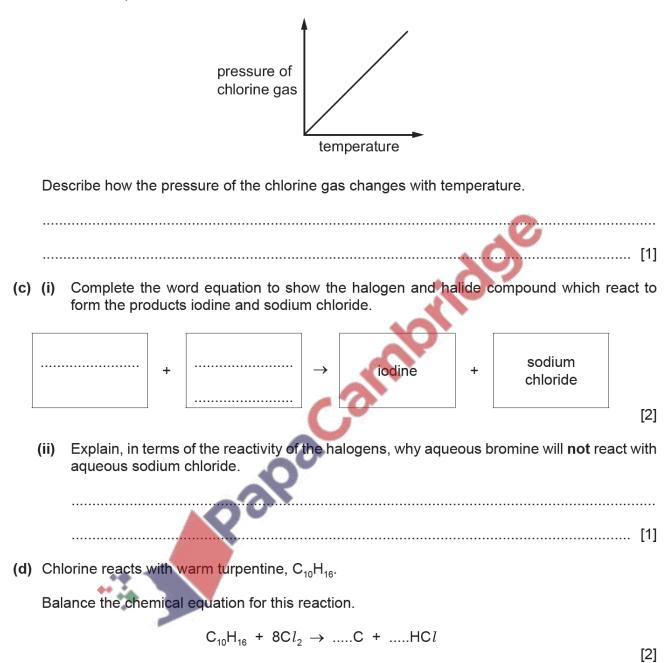
(c) (i) Complete the word equation to show the halogen and halide compound which react to form the products bromine and potassium chloride.

......[1]

	+	 \rightarrow	bromine	+	potassium chloride	
						[2]


(ii) Explain, in terms of the reactivity of the halogens, why aqueous bromine will **not** react with aqueous potassium chloride.

.....[1]


- (d) Bromine reacts with hydrogen sulfide, H_2S .
 - (i) Complete the chemical equation for this reaction.

..... +
$$H_2S \rightarrow \dots HBr + S$$
 [2]

(ii) The energy level diagram for this reaction is shown.

(b) The graph shows how the pressure of chlorine gas changes when temperature increases. The volume is kept constant.

[Total: 10]

4. 0620/33/M/J/19/No.8 This question is about Group IV elements and their compounds.

- (a) Lead compounds are pollutants in the air.
 - (i) State one source of lead compounds in the air.
 -[1]
 - (ii) State one adverse effect of lead compounds on health.

.....[1]

(b) The table shows how easy it is to reduce four metal oxides with carbon

metal oxide	ease of reduction with carbon
bismuth(III) oxide	reduced by carbon only above 250 °C
chromium(III) oxide	reduced by carbon only above 1200 °C
lead(II) oxide	reduced by carbon only above 440 °C
zinc oxide	reduced by carbon only above 990 °C

Use the information in the table to put the four metals in order of their reactivity. Put the least reactive metal first.

most reactive least reactive [2] (c) Part of the structure of graphite is shown. Use the information from the diagram to explain why graphite is used as a lubricant.

.....[1]

(d)	When carbon burns in a limited supply of air, a poisonous gas is formed.					
	Name this	s gas.				
						[1]
(e)		bon is completely ioxide forms a slig			e is formed.	
		e of these pH valu rcle around the co		f a slightly aci	dic solution?	
		рН 6	рН 7	pH 8	pH 10	[1]
(f)		ioxide is a greenh	-		.i09	
	(i) Name	e one other major	greennouse g	as.	0	[1]
	(ii) State	e one effect that gr	eenhouse gas	es have on the	e environment.	
				<u> </u>		[1]
	•		Pap o			[Total: 9]

5. 0620/42/M/J/19/No.3

This question is about phosphorus and compounds of phosphorus.

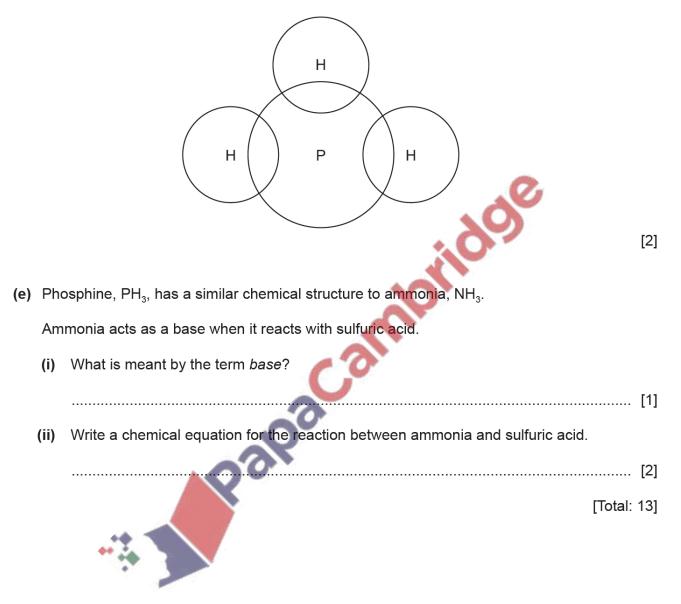
(a) Phosphorus has the formula P_4 . Some properties of P_4 are shown.

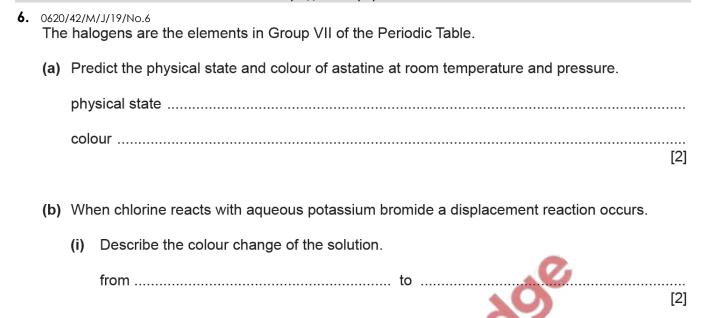
melting point/°C	45
boiling point/°C	280
electrical conductivity	non-conductor
solubility in water	insoluble

(i) Name the type of bonding that exists between the atoms in a P_4 molecule.

(ii)	Explain, in terms of attractive forces between particles, why P ₄ has a low melting point.
	[1]
()	
(iii)	Explain why phosphorus is a non-conductor of electricity.
	<u>/ </u>
	[1]
(b) Pho	osphorus, P_4 , reacts with air to produce phosphorus(V) oxide, P_4O_{10} .
(i)	Write a chemical equation for this reaction.
	[2]
(ii)	What type of chemical reaction is this?

(c) Phosphorus(V) oxide, P_4O_{10} , is an acidic oxide.


Phosphorus(V) oxide, P_4O_{10} , reacts with aqueous sodium hydroxide to form a salt containing the phosphate ion, PO_4^{3-} . Water is the only other product.


Write a chemical equation for the reaction between phosphorus(V) oxide and aqueous sodium hydroxide.

......[2]

- (d) Phosphine has the formula PH_{3} .

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of phosphine. Show outer shell electrons only.

(ii) Write a chemical equation for this reaction.

.....

(c) Reactions occur when some aqueous solutions of halogens are added to aqueous solutions of halides.

Use the key to complete the table to show the results of adding halogens to halides.

- key
- ✓ = reaction
- \boldsymbol{X} = no reaction

ction eaction			300		
				halides	
	• •	\frown	KC <i>l</i> (aq)	KBr(aq)	KI(aq)
	IS 🔹	Cl ₂ (aq)		\checkmark	
	halogens	Br ₂ (aq)			
	h	I ₂ (aq)			

[2]

[Total: 8]

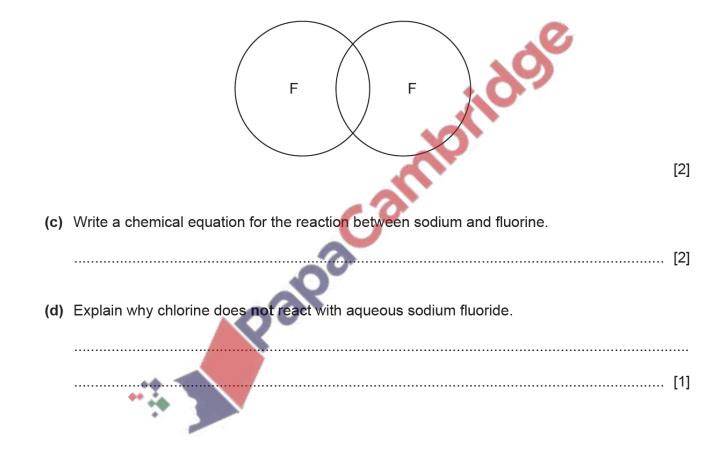
.....[2]

7. 0620/42/F/M/19/No.1 Period 3 of the Periodic Table is shown.

			-					
sodium	magnesium	aluminium	silicon	phosphorus	sulfur	chlorine	argon	
Each elem State whic	e following ques nent may be use h element:	ed once, more	than once					
(a) is a ga	as at room temp	perature and p	oressure					
						0.		[1]
(b) forms	a basic oxide w	vith a formula	of the forn	n X ₂ O	6	>		[1]
								1.1
(c) is ma	de of atoms whi	ch have a full	outer she	ll of electrons				
								[1]
(d) forms	an oxide which	causes acid r	rain	0				[4]
 (e) is extr	acted from bau	xite	8					[1]
 (f) forms	an oxide which	has a macror	nolecular	structure				[1]
								[1]
(g) consis	sts of diatomic n	nolecules.						
								[1]
							[Tota	l: 7]

. .

8. 0620/42/F/M/19/No.3


Fluorine is a Group VII element. Fluorine forms compounds with metals and non-metals.

(a) Predict the physical state of fluorine at room temperature and pressure.

[1]

(b) Fluorine exists as diatomic molecules.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of fluorine. Show outer shell electrons only.

(e) Tetrafluoromethane and lead(II) fluoride are fluorides of Group IV elements. Some properties of tetrafluoromethane and lead(II) fluoride are shown in the table.

property	tetrafluoromethane	lead(II) fluoride
formula	CF_4	
melting point/°C	-184	855
boiling point/°C	-127	1290
conduction of electricity when solid	non-conductor	non-conductor
conduction of electricity when molten	non-conductor	good conductor

(i)	What is the formula of lead(II) fluoride?
	[1]
(ii)	What type of bonding is present between the atoms in tetrafluoromethane?
(iii)	What type of structure does solid lead(${ m II}$) fluoride have?
(iv)	Explain, in terms of attractive forces between particles, why lead(II) fluoride has a much higher melting point than tetrafluoromethane.
	In your answer refer to the types of attractive forces between particles and their relative
	strengths.
	[3]

(f) Tetrafluoroethene is an unsaturated compound with the formula C_2F_4 . Tetrafluoroethene is the monomer used to make the polymer poly(tetrafluoroethene). What is meant by the term unsaturated? (i)[1] Describe a test to show that tetrafluoroethene is unsaturated. (ii) test..... observations [2] (iii) Draw the structure of a molecule of tetrafluoroethene. Show all of the atoms and all of the bonds. Cambri [1] Tetrafluoroethene can be polymerised to form poly(tetrafluoroethene). (iv) Draw one repeat unit of poly(tetrafluoroethene). Show all of the atoms and all of the bonds. [2] (v) Deduce the empirical formula of: tetrafluoroethene

poly(tetrafluoroethene).[2]

[Total: 20]