Chemical Energetics – 2019 Nov IGCSE

1. 0620/41/O/N/19/No.7 This question is about ethanol.

(a) Ethanol that is suitable for use as a fuel can be manufactured from sugars such as glucose, $C_6H_{12}O_6$, by a two-step process.

Describe how this can be done. In your answer, include:

• ;	an e	quation	for the	reaction	in which	ethanol	is formed
-----	------	---------	---------	----------	----------	---------	-----------

- the essential conditions for the reaction in which ethanol is formed
- the name of the process used to obtain ethanol that is pure enough to use as a fuel from the reaction mixture.

(b) The equation for the complete combustion of ethanol is shown.

Use the bond energies in the table to calculate the energy change, in kJ/mol, for the complete combustion of ethanol.

bond	bond energy in kJ/mol
C–C	347
C–H	413
C-O	358
C=O	805
О–Н	464
O=O	498

• Energy needed to break bonds.

.....kJ

• Energy released when bonds are formed.

..... kJ

• Energy change for the complete combustion of ethanol.

energy change = kJ/mol

[3]

(c)	Ethanol can be oxidised by hydrogen peroxide to form ethanal, CH ₃ CHO. A catalyst for this
	reaction is Fe ³⁺ .

(i)	What is meant by the term <i>catalyst</i> ?

(ii) The structure of ethanal is shown.

Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ethanal. Show outer shell electrons only.

(iii) The table gives the boiling points of ethanal and ethanol.

substance	boiling point/°C
ethanal	20
ethanol	78

ooint than eth	rces betwee	n particles,	suggest	wny et	nanai n	ias a i	lower	polling
								[1

[3]

/ -11	Ethene gas		_4 4_	£		-41 1
n	i Einene das	reacts with	STEAM TO	1 TORM	naseniis	einanoi
v.	Luiciic gas	I CUOLO WILLI	otcum to	, 101111	gascous	Culturior.

$$C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$$

The reaction can reach a position of equilibrium. The forward reaction is exothermic.

(i)	State and explain the effect of increasing the pressure on the position of equilibrium . All other conditions are unchanged.
	[2]
(ii)	Increasing the pressure of a gas increases its concentration.
	State and explain the effect of increasing the pressure on the rate of the reaction. All other conditions are unchanged.
	[2]
(iii)	State and explain the effect of increasing the temperature on the position of equilibrium . All other conditions are unchanged.
	[2]
	[Total: 20]

2. 0620/43/O/N/19/No.4

This question is about phosphorus and compounds of phosphorus.

(a) A phosphorus molecule contains four phosphorus atoms only.

r	11	
	ויי	

- **(b)** Phosphorus reacts with chlorine gas to produce phosphorus(III) chloride, PCl_3 .
 - (i) Write a chemical equation for the reaction between phosphorus and chlorine to produce phosphorus(III) chloride, PCl_3 .

1771
 141

(ii) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of phosphorus(III) chloride, PCl_3 . Show outer shell electrons only.

[2]

(c)	Gaseous	phosphorus(III)	chloride,	PCl_3 ,	reacts	with	gaseous	chlorine	to	form	gaseous
	phosphor	us(V) chloride, P	$Cl_{\scriptscriptstyle{E}}.$								

$$PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$$

The chemical equation for this reaction can be represented as shown.

$$Cl \longrightarrow Cl + Cl \longrightarrow Cl \longrightarrow Cl \longrightarrow Cl$$

(i) Use the bond energies in the table to calculate the energy change, in kJ/mol, of the reaction.

bond	bond energy in kJ/mol
P-Cl	326
Cl-Cl	243

Energy needed to break bonds.

.....kJ

Energy released when bonds are formed.

.....kJ

• Energy change of reaction.

energy change = kJ/mol [3]

(ii) Deduce whether the energy change for this reaction is exothermic or endothermic. Explain your answer.

6

		$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$	
		ite and explain the effect, if any, on the position of equilibrium if the pressure is increated other conditions are unchanged.	ised.
			[2]
(e)	Pho	osphine, PH ₃ , is produced by the reaction between water and calcium phosphide, Ca ₃	P ₂ .
	Bal	ance the chemical equation for this reaction.	
		$Ca_3P_2 +H_2O \rightarrowCa(OH)_2 +PH_3$	[2]
(f)	The	e phosphonium ion, PH ₄ ⁺ , is similar to the ammonium ion.	
	(i)	State the formula of the ammonium ion.	. [1]
	(ii)	Suggest the formula of phosphonium iodide.	. [1]
(g)	Cal	cium phosphate contains the phosphate ion, PO ₄ ³⁻ .	
	Wh	at is the formula of calcium phosphate?	
			. [1]
(h)		osphorus forms another compound with hydrogen with the following composition by m 93.94%; H, 6.06%.	าลรร
	(i)	Calculate the empirical formula of the compound.	
		empirical formula =	[2
	(ii)	The compound has a relative molecular mass of 66.	. [-]
	(,	Deduce the molecular formula of the compound.	
		20000 the molecular formation of the compound.	
		molecular formula =	[1]

(d) Under certain conditions the reaction reaches equilibrium.

[Total: 19]