## Metals – 2019 Nov IGCSE

|     | (i)    | The negative electrode is made of iron.                                                                                                                        |         |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     |        | Suggest a non-metal which could be used for the positive electrode. Give a reason for your answer.                                                             |         |
|     |        |                                                                                                                                                                | [2]     |
|     | (ii)   | Predict the products of the electrolysis of molten magnesium chloride at:                                                                                      |         |
|     |        | the positive electrode                                                                                                                                         |         |
|     |        | the negative electrode.                                                                                                                                        | <br>[2] |
|     |        |                                                                                                                                                                |         |
| (b) |        | following statements are about the procedure for making crystals of hydragnesium chloride from magnesium and dilute hydrochloric acid.                         | ated    |
|     | Α      | Leave the mixture until no more bubbles are seen.                                                                                                              |         |
|     | В      | Leave the mixture at room temperature to form more crystals.                                                                                                   |         |
|     | C<br>D | Add an excess of magnesium to dilute hydrochloric acid.  Warm the filtrate to the point of crystallisation.                                                    |         |
|     | E      | Filter off the crystals and dry between filter papers.                                                                                                         |         |
|     | F      | Filter off the excess magnesium.                                                                                                                               |         |
|     |        | the statements A, B, C, D, E and F in the correct order.                                                                                                       |         |
|     | me     | e first one has been done for you.                                                                                                                             |         |
|     |        |                                                                                                                                                                | [2]     |
| (c) | Cop    | gnesium is a metal in Group II of the Periodic Table. Oper is a transition element. Oper has a higher melting point and a higher boiling point than magnesium. |         |
|     | Des    | scribe <b>two</b> other properties of copper which are different from those of magnesium.                                                                      |         |
|     | 1      |                                                                                                                                                                |         |
|     | 2      |                                                                                                                                                                |         |
|     |        |                                                                                                                                                                | [2]     |

0620/31/O/N/19/No.7
 (a) Magnesium is manufactured by the electrolysis of molten magnesium chloride.

(d) Chromatography can be used to separate a mixture of ions from different transition element compounds.

Four samples, **R**, **S**, **T** and **U**, each containing transition element ions, were placed on a piece of chromatography paper.

Two solutions, **Y** and **Z**, each containing only one type of transition element ion were also placed on the same piece of chromatography paper.

The results of the chromatography are shown.



| (1)   | Which sample, R, S, I or U, contains the same ions as both solution Y and solution Z?                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| (ii)  | Which sample, R, S, T or U, does <b>not</b> contain the same ions as either solution Y or solution <b>Z</b> ?                    |
|       | [1]                                                                                                                              |
| (iii) | In which sample, <b>R</b> , <b>S</b> , <b>T</b> or <b>U</b> , has the greatest number of transition element ions been separated? |
|       | [1]                                                                                                                              |
|       | [Total: 11]                                                                                                                      |

| 2. | 0620/32/O/N/19/No.4<br>An isotope of calcium is written as shown.                                                       |      |                |                                           |                                                      |     |
|----|-------------------------------------------------------------------------------------------------------------------------|------|----------------|-------------------------------------------|------------------------------------------------------|-----|
|    | <sup>44</sup> 20Ca                                                                                                      |      |                |                                           |                                                      |     |
|    | (a) (i) Deduce the number of protons, electrons and neutrons in this isotope of calcium.                                |      |                |                                           | llcium.                                              |     |
|    | number of protons                                                                                                       |      |                |                                           |                                                      |     |
|    | number of electrons                                                                                                     |      |                |                                           |                                                      |     |
|    | number of neutrons                                                                                                      |      |                |                                           |                                                      |     |
|    |                                                                                                                         |      |                |                                           |                                                      | [3] |
|    |                                                                                                                         | (ii) | State one indu | strial use of radioactive isotop          | oes.                                                 |     |
|    |                                                                                                                         |      |                |                                           |                                                      | [1] |
|    | (b) Draw the electronic structure of a calcium atom.                                                                    |      |                |                                           |                                                      |     |
|    | (c) The table shows some information about the reaction of four metals with dry air at room temperature and on heating. |      |                |                                           | [2]                                                  |     |
|    |                                                                                                                         |      |                |                                           | ry air at room                                       |     |
|    |                                                                                                                         |      | metal          | reaction with dry air at room temperature | reaction with dry air on heating                     |     |
|    |                                                                                                                         |      | íron           | no reaction                               | only burns when in the form of a fine wire or powder |     |
|    |                                                                                                                         |      | copper         | no reaction                               | does not burn but the surface oxidises slowly        |     |
|    | samarium surface oxidises slowly burns eas                                                                              |      | burns easily   |                                           |                                                      |     |
|    | sodium surface oxidises rapidly burns easily                                                                            |      |                |                                           |                                                      |     |
|    | Use this information to put the <b>four</b> metals in order of their reactivity.  Put the least reactive metal first.   |      |                |                                           |                                                      |     |

[Total: 8]

[2]

most reactive

least reactive

| Aluminium is manufactured by the electrolysis of molten aluminium oxide. |                                                                                                                                                       |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| (a)                                                                      | Predict the products of the electrolysis of molten aluminium oxide at:                                                                                |  |  |  |  |
|                                                                          | the positive electrode                                                                                                                                |  |  |  |  |
|                                                                          | the negative electrode.                                                                                                                               |  |  |  |  |
|                                                                          | [2]                                                                                                                                                   |  |  |  |  |
| (b)                                                                      | Complete these sentences about the uses of aluminium using words from the list.                                                                       |  |  |  |  |
|                                                                          | conductivity corrosion density heavy                                                                                                                  |  |  |  |  |
|                                                                          | malleability reduction strong weak                                                                                                                    |  |  |  |  |
|                                                                          | Aluminium is used in the manufacture of aircraft because it is relatively and                                                                         |  |  |  |  |
|                                                                          | has a low Aluminium is used for food containers because of its                                                                                        |  |  |  |  |
|                                                                          | resistance to                                                                                                                                         |  |  |  |  |
|                                                                          | [3]                                                                                                                                                   |  |  |  |  |
| (c)                                                                      | The following statements are about the procedure for making crystals of hydrated aluminium sulfate from aluminium hydroxide and sulfuric acid.        |  |  |  |  |
|                                                                          | A Filter off the excess aluminium hydroxide.                                                                                                          |  |  |  |  |
|                                                                          | B Filter off the crystals and dry between filter papers.                                                                                              |  |  |  |  |
|                                                                          | <ul> <li>Warm the filtrate to the point of crystallisation.</li> <li>Add aluminium hydroxide to warm dilute sulfuric acid and stir.</li> </ul>        |  |  |  |  |
|                                                                          | <ul><li>Add aluminium hydroxide to warm dilute sulfuric acid and stir.</li><li>Leave the mixture at room temperature to form more crystals.</li></ul> |  |  |  |  |
|                                                                          | F Add more aluminium hydroxide to the sulfuric acid until the aluminium hydroxide is i excess.                                                        |  |  |  |  |
|                                                                          | Put the statements <b>A</b> , <b>B</b> , <b>C</b> , <b>D</b> , <b>E</b> and <b>F</b> in the correct order.<br>The first one has been done for you.    |  |  |  |  |
|                                                                          |                                                                                                                                                       |  |  |  |  |
|                                                                          | [2]                                                                                                                                                   |  |  |  |  |

**3.** 0620/33/O/N/19/No.7

[Total: 7]

|     |      | /N/19/No.3<br>estion is about metals and metal oxides.                                                          |         |
|-----|------|-----------------------------------------------------------------------------------------------------------------|---------|
| (a) | Mos  | st metals have a high melting point.                                                                            |         |
|     | Sta  | te <b>one</b> other physical property that all metals have.                                                     | [1]     |
| (b) | Iror | n often rusts.                                                                                                  |         |
|     | Nar  | me the <b>two</b> substances, other than iron, that must be present for iron to rust.                           |         |
|     |      |                                                                                                                 | <br>[1] |
| (c) | Iror | can be obtained by heating iron(III) oxide with zinc powder. $Fe_2O_3 + 3Zn \rightarrow 2Fe + 3ZnO$             |         |
|     | (i)  | What can be deduced about the reactivity of zinc from this reaction?                                            | [1]     |
|     | (ii) | The ionic equation for this reaction is shown. $2Fe^{3+} + 3Zn  \rightarrow  2Fe  +  3Zn^{2+}$                  |         |
|     |      | Identify the oxidising agent in this reaction. Explain your answer in terms of elect transfer.  oxidising agent |         |

4.

[2]

(d) Zinc oxide is amphoteric.

Describe **two** simple experiments to show that zinc oxide is amphoteric. Name the reagents you would use and describe the observations you would make.

[Total: 8]



| 0620/43/O/N/19/No.3  (a) Name the ore of aluminium which mainly consists of aluminium oxide. |                                                                                                                                                     |   |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
|                                                                                              | [1]                                                                                                                                                 |   |  |  |
| <b>(b)</b> Alu                                                                               | minium is produced by the electrolysis of aluminium oxide dissolved in molten cryolite.                                                             |   |  |  |
|                                                                                              | waste gases                                                                                                                                         |   |  |  |
|                                                                                              |                                                                                                                                                     |   |  |  |
| negat                                                                                        | positive electrode  molten mixture of aluminium oxide and cryolite  aluminium                                                                       |   |  |  |
| (i)                                                                                          | Give <b>two</b> reasons why the electrolysis is done using a molten mixture of aluminium oxide and cryolite instead of molten aluminium oxide only. | ļ |  |  |
|                                                                                              | 1                                                                                                                                                   |   |  |  |
|                                                                                              |                                                                                                                                                     |   |  |  |
|                                                                                              | 2[2]                                                                                                                                                |   |  |  |
| (ii)                                                                                         | Write ionic half-equations for the reactions occurring at the electrodes.                                                                           |   |  |  |
|                                                                                              | positive electrode                                                                                                                                  |   |  |  |
|                                                                                              | negative electrode                                                                                                                                  |   |  |  |
| (iii)                                                                                        | [2] The anodes are made of carbon and have to be replaced regularly.                                                                                |   |  |  |

.

Explain why the carbon anodes have to be replaced regularly.

| (c) The positions of some common metals in the reactivity series are shown. |       |                                                  |                      |                       | e shown.                     |
|-----------------------------------------------------------------------------|-------|--------------------------------------------------|----------------------|-----------------------|------------------------------|
|                                                                             |       |                                                  | most reactive        | magnesium             |                              |
|                                                                             |       |                                                  |                      | aluminium             |                              |
|                                                                             |       |                                                  | least reactive       | copper                |                              |
|                                                                             | (i)   | When magnesium is pimmediately.                  | placed in aqueous    | copper(II) sulfate a  | displacement reaction occurs |
|                                                                             |       | Write an ionic equatio                           | n for the reaction.  | Include state symbo   | ls.                          |
|                                                                             |       |                                                  |                      |                       | [2]                          |
|                                                                             | (ii)  | State <b>two</b> observation copper(II) sulfate. |                      |                       | sium is placed in aqueous    |
|                                                                             |       |                                                  |                      |                       |                              |
|                                                                             |       | 2                                                |                      | N.                    | [2]                          |
| (                                                                           | (iii) | When aluminium foil i place.                     | s added to aqueo     | us copper(II) sulfate | no immediate reaction takes  |
|                                                                             |       | Explain why.                                     | 03                   |                       | [1]                          |
| (d)                                                                         | Aluı  | minium powder reacts                             | with iron(III) oxide | to produce aluminiu   | ım oxide and iron.           |
| Write a chemical equation for this reaction.                                |       |                                                  |                      |                       |                              |
|                                                                             |       | ***                                              | <u></u>              |                       | [2]                          |
|                                                                             |       |                                                  |                      |                       | [Total: 14                   |
|                                                                             |       |                                                  |                      |                       | •                            |