Stoichiometry - 2019 Nov IGCSE

1. 0620/41/O/N/19/No.6

Dilute hydrochloric acid, HCl(aq), reacts with aqueous sodium carbonate, $Na_2CO_3(aq)$.

The chemical equation for the reaction is shown.

$$2\mathsf{HC}\mathit{l} + \mathsf{Na}_2\mathsf{CO}_3 \to 2\mathsf{NaC}\mathit{l} + \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O}$$

(a) A 25.0 cm³ portion of Na₂CO₃(aq) was placed in a conical flask with a few drops of a suitable indicator. It was titrated against HC*l*(aq) of concentration 0.180 mol/dm³.

20.0 cm³ of HCl(aq) was required to reach the end-point.

Calculate the concentration of the Na₂CO₃(aq), in mol/dm³, using the following steps.

• Calculate the number of moles of HCl used in the titration.

..... mo

Calculate the number of moles of Na₂CO₃ contained in the 25.0 cm³ portion of Na₂CO₃(aq).

..... mo

Calculate the concentration of the Na₂CO₃(aq) in mol/dm³.

..... mol/dm³

[3]

(b) In another experiment, the volume of carbon dioxide, CO₂, produced was 48.0 cm³, measured at room temperature and pressure.

How many moles of CO₂ is this?

moles of CO₂ = mol [1]

(i)	Calculate the concentration of the HBr(aq) in g/dm ³ .
	concentration of HBr(aq) = g/dm³ [1]
(ii)	Explain why concentrated HBr(aq) can conduct electricity.
	[2]
,	
(iii)	Magnesium is not a suitable material from which to make the electrodes.
	Explain why.
	<u> </u>
	[1]
(iv)	Predict the product formed at the anode when concentrated HBr(aq) is electrolysed.
	[1]
(v)	Write the ionic half-equation for the reaction occurring at the cathode.
(*)	
	[2]
	[Total: 11]

(c) A sample of concentrated hydrobromic acid, HBr(aq), was electrolysed using platinum electrodes.

The concentration of the hydrobromic acid was $8.89\,\text{mol}/\text{dm}^3$.

2. 0620/43/O/N/19/No.5

Nitrates such as ammonium nitrate are used as fertilisers.

The final stage in the production of ammonium nitrate is shown in the equation.

$$Ca(NO_3)_2 + 2NH_3 + CO_2 + H_2O \rightarrow 2NH_4NO_3 + CaCO_3$$

Calculate the maximum mass of ammonium nitrate that can be produced from 820g of calcium nitrate, $\text{Ca}(\text{NO}_3)_2$, using the following steps.

The relative formula mass, M_r , of calcium nitrate, $Ca(NO_3)_2$, = 164.

Calculate the number of moles of Ca(NO₃)₂ in 820 g.

• Deduce the number of moles of NH₄NO₃ produced.

Calculate the M_r of NH₄NO₃.

..... mol

 $M_{\rm r}$ of NH₄NO₃ =

Calculate the maximum mass of ammonium nitrate produced.

3