<u>The Periodic Table – 2019 Nov IGCSE</u>

1. 0620/31/O/N/19/No.5

This question is about the halogens and compounds of the halogens.

(a) The properties of some halogens are shown in the table.

element	melting point in °C	boiling point in °C	density of liquid at its boiling point in g/cm ³	atomic radius in nm
chlorine	-101	-35		0.099
bromine	-7	59	3.12	0.114
iodine	114		4.93	0.133
astatine	302	337	6.35	3

- (i) Complete the table to estimate:
 - the density of liquid chlorine
 - the boiling point of iodine.

(iii) Describe the trend in the atomic radius of the halogens down the group.

[1]

(iii) Predict the physical state of bromine at 50 °C.

Give a reason for your answer.

(b) Bromine reacts with an aqueous potassium salt to form iodine and a different potassium salt.
Complete the word equation for this reaction.

[2]

[2]

(c) I	Flu	orine i	s above chlorine	e in Group VII of t	he Periodic Table).	
((i)		ain, using ideas a ous sodium fluo		ty of the halogens	s, why chlorine d	oes not react with
							[1]
(i	ii)	Balaı	nce the chemica	l equation for the	reaction of fluoring	ne with ammonia	à.
				NH ₃ +F	$_2 \rightarrow N_2 + 6HF$		[2
(ii	ii)	A cor	mpound of fluori	ne has the formul	la XeO ₃ F ₂ .		
			plete the table to your Periodic Ta		ative molecular n	nass of XeO ₃ F ₂ .	
			type of atom	number of atoms	relative atomic mass	900	
			xenon		10		
			oxygen	3	16	3 × 16 = 48	
			fluorine	(0		
				20	relative mo	lecular mass =	[2
(iv	~ \	The	compound YeO	F ₂ readily underg	loes reduction		[- -
(1)	v)			term reduction?	oes reduction.		
		vviia	t is meant by the				[4]
		•••••	**	.,			[1] [Total: 13]
							[Total: To

2. 0620/32/O/N/19/No.5 This question is about the halogens and compounds of the halogens.

(a) The properties of some halogens are shown in the table.

element	melting point in °C	boiling point in °C	density of liquid at boiling point in g/cm³	colour
fluorine	-220	-188	1.51	
chlorine	-101		1.56	light green
bromine	-7	59	3.12	red-brown
iodine	114	184		grey-black

iodi	ne	114	184		grey-black	
(i)	• 1	plete the table to other the boiling point of the density of iodin	f chlorine	aildo		[2]
(ii)	Desc	cribe the trend in t		of the halogens down the	e group.	[1]
(iii)	Pred		ate of bromine at	-20°C.		[1]
(iv)		ch one of the follow one box.	wing is most likely dark green light grey-blac light yellow purple	to be the colour of fluor	ine?	
						[1]

[2]
[2]
[2]
[1]
[1]
[1]
[1

(d) A compound of chlorine has the formula $C_6H_4Cl_2$.

Complete the table to calculate the relative molecular mass of C₆H₄Cl₂. Use your Periodic Table to help you.

type of atom	number of atoms	relative atomic mass	
carbon	6	12	6 × 12 = 72
hydrogen			
chlorine			
	Paloa		lecular mass = .

relative molecular mass =

[2]

[Total: 15]

3. 0620/33/O/N/19/No.5

This question is about Group I elements.

(a) The properties of some Group I elements are shown in the table.

element	melting point in °C	boiling point in °C	relative thermal conductivity	atomic radius/pm
lithium		1342	84	152
sodium	97	883	142	186
potassium	63	760	102	
rubidium	39	686	58	248

(i) Complete the table to estimat

- the melting point of lithium the atomic radius of potassium.

I GDIC	iidiii		000		240	
(i)	Com	plete the table to	estimate:	10		
		he melting point on the atomic radius of		wilo.		[2]
(ii)	Desc	cribe the trend in the	ne boiling points o	f the Group I elements o	lown the group.	
						[1]
(iii)	Caes	sium is below rubio	dium in Group I			
		he information in the sium.	34	why it is difficult to predic		ctivity
(iv)	Pred	ict the physical sta	ate of rubidium at	45°C.		[1]
· · · /		a reason for your				
						[0]

(b)	Lithium	reacts	with	oxygen	to	form	lithium	oxide.	
` '				, 0					

(i) Balance the chemical equation for the

....Li +
$$O_2 \rightarrowLi_2O$$
 [2]

(ii) Is lithium oxide an acidic oxide or a basic oxide?
Give a reason for your answer.

(iii) State the name of the particle which is lost from a lithium atom when it forms a lithium ion.

(iv) A compound of lithium has the formula C₂H₅Li.

Complete the table to calculate the relative molecular mass of C_2H_5Li . Use your Periodic Table to help you.

type of atom	number of atoms	relative atomic mass	
carbon	2		
hydrogen	5	1	5 × 1 = 5
lithium	5.0.		

relative molecular mass =[2]

[Total: 12]

4. 0620/42/O/N/19/No.1

The Periodic Table is very useful to chemists.

Refer only to elements with atomic numbers 1 to 36 in the Periodic Table provided when answering **Question 1**.

(a)	Use	e information from the Periodic Table provided to identify one element which:	
	(i)	has atoms with exactly 9 protons	. [1]
((ii)	has atoms with 0 neutrons	. [1]
(i	iii)	has atoms with exactly 23 electrons	. [1]
(i	iv)	has atoms with an electronic structure of 2,8,6	. [1]
((v)	forms ions with a charge of 3– containing 18 electrons	. [1]
()	vi)	forms ions with a charge of 2+ containing 10 electrons	. [1]
(v	ii)	has a relative atomic mass that shows it has at least two isotopes.	. [1]
(b)	Stat	te which metal in the first 36 elements:	
	(i)	is the Group I element which reacts most vigorously with water	. [1]
((ii)	reacts with air to form lime.	. [1]
(c)	One	e element in the first 36 elements is used as the fuel in a fuel cell.	
	(i)	Name this element.	
			. [1]
((ii)	Write the overall chemical equation for the reaction which occurs when the element (c)(i) reacts in a fuel cell.	nt in
			. [2]
		[Total	: 12]