Acids, bases and salts – 2021 IGCSE 0620

1. June/2021/Paper 11/No.17

Three separate experiments are carried out on an aqueous solution of S.

The results are shown.

- Magnesium does not react with the solution.
- 2 A gas is given off when ammonium sulfate is heated with the solution.
- 3 Methyl orange turns yellow when added to the solution.

What is S?

- A hydrochloric acid
- sodium hydroxide
- С sodium chloride
- **D** sulfur dioxide

2. June/2021/Paper 11,12,13,21,22&23/No.18

bridge Element X forms an oxide, XO, that neutralises sulfuric acid.

Which row describes X and XO?

	element X	nature of oxide, XO
Α	metal	acidic
В	metal	basic
С	non-metal	acidic
D	non-metal	basic

3. June/2021/Paper 11&21/No.19

Copper(II) sulfate is prepared by adding excess copper(II) oxide to warm dilute sulfuric acid.

Which purification methods are used to obtain pure solid copper(II) sulfate from the reaction mixture?

- 1 crystallisation
- 2 filtration
- 3 chromatography
- 4 distillation
- **A** 1 and 4 1 and 2 2 and 3 В С 3 and 4

4. June/2021/Paper_12/No.17

Which statements about acids are correct?

- 1 They react with carbonates to form carbon dioxide.
- 2 They react with metals to form hydrogen.
- 3 They react with ammonium salts to form ammonia.
- **A** 1, 2 and 3
- 1 and 2 only
- С 1 and 3 only
- D 2 and 3 only

pridae

5. June/2021/Paper 12/No.19

Which test for the named gas is correct?

- Oxygen extinguishes a lighted splint.
- Hydrogen relights a glowing splint. В
- C Ammonia turns blue litmus red.
- **D** Carbon dioxide turns limewater milky.

6. June/2021/Paper 12/No.20

Three tests are done to identify the ions present in aqueous solution X.

test	test result
dilute nitric acid, followed by aqueous silver r	nitrate cream precipitate
aqueous sodium hydroxide	white precipitate, soluble in excess
aqueous ammonia	white precipitate, soluble in excess

Which ions are present in X?

- A Al3+ and Br
- Al^{3+} and I^{-}
- ${f C}$ ${f Zn}^{2+}$ and ${f Br}^ {f D}$ ${f Zn}^{2+}$ and ${f I}^-$

7. June/2021/Paper 13/No.19

Which methods of salt preparation are suitable for copper(II) chloride?

- 1 Add copper(II) carbonate to dilute hydrochloric acid.
- 2 Add copper to dilute hydrochloric acid.
- Warm copper(II) oxide with dilute hydrochloric acid.
- **A** 1, 2 and 3
- В 1 and 2 only
- 1 and 3 only
- 2 and 3 only D

8. June/2021/Paper_13/No.20

A white solid, J, is tested and the observations are shown.

test	observations
flame test	red flame
acidify with nitric acid then add aqueous silver nitrate	white precipitate

What is J?

- A lithium bromide
- B lithium chloride
- C sodium bromide
- **D** sodium chloride

9. June/2021/Paper_21/No.21

In which equation is the underlined reactant acting as a base?

A
$$CH_3COO^- + \underline{H_3O^+} \rightarrow CH_3COOH + H_2O$$

$$\mathbf{B} \quad \underline{\mathsf{NH}_4}^{\pm} \, + \, \mathsf{OH}^{-} \, \rightarrow \, \mathsf{NH}_3 \, + \, \mathsf{H}_2\mathsf{O}$$

$$\mathbf{C} \quad \mathsf{CO}_2 \; + \; 2\underline{\mathsf{H}_2\mathsf{O}} \; \rightarrow \; \mathsf{H}_3\mathsf{O}^+ \; + \; \mathsf{HCO}_3^-$$

$$\mathbf{D} \quad \underline{\mathsf{H}^{\scriptscriptstyle +}} \; + \; \mathsf{OH}^{\scriptscriptstyle -} \; \rightarrow \; \mathsf{H}_2\mathsf{O}$$

10. June/2021/Paper_21/No.24

Element R forms a covalent compound R₂Si with silicon.

Which row describes R?

	metallic or non-metallic character	group number in the Periodic Table
Α	metallic	II
В	metallic	VI
С	non-metallic	II
D	non-metallic	VI

11. June/2021/Paper_22/No.17

When bismuth(III) chloride, BiCl₃, reacts with water, a white precipitate of bismuth(III) oxychloride, BiOC1, is formed. The equation for the reaction is shown.

$$BiCl_3(aq) + H_2O(I) \rightleftharpoons BiOCl(s) + 2H^+(aq) + 2Cl^-(aq)$$

The reaction is in equilibrium.

Which changes cause the white precipitate to dissolve?

- 1 adding acid
- 2 adding water
- adding sodium chloride solution 3
- A 1 and 2 only B 1 and 3 only C 2 and 3 only ide

12. June/2021/Paper_22/No.19

Information about the solubility of salts is shown.

salt	solubility
chlorides	soluble (except for lead(II) chloride and silver chloride)
nitrates	soluble
sulfates	soluble (except for barium sulfate and lead(II) sulfate)

Aqueous solutions of which two compounds would produce a precipitate when added together?

- $Ba(NO_3)_2$ and $CaCl_2$
- В CuSO₄ and Zn(NO₃)₂
- KCl and Na₂SO₄
- Pb(NO₃)₂ and MgSO

13. June/2021/Paper 22/No.21

Burning fossil fuels releases sulfur dioxide which leads to acid rain.

Which ion in the rain water causes it to be acidic?

- A H⁺
- B OH
- $\mathbf{C} \quad O^{2-}$
- **D** SO₄²⁻

14. June/2021/Paper_23/No.19

Aqueous solutions of sodium sulfate and barium chloride are mixed.

$$Na_2SO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$$

Which process is used to separate a sample of barium sulfate from the reaction mixture?

- precipitation
- В filtration
- evaporation C
- distillation D

15. March/2021/Paper 12/No.18

Which property is shown by the alkali sodium hydroxide?

- It has a pH less than pH 7.
- It produces a gas when it is warmed with ammonium chloride. a calmila В
- C It turns blue litmus red.
- **D** It turns universal indicator green.

16. March/2021/Paper 12&22/No.19

Part of the Periodic Table is shown.

Which element forms an acidic oxide?

17. March/2021/Paper_12&22/No.20

When aqueous sodium hydroxide is added to a solution of a metal ion, a grey-green precipitate forms, which dissolves in excess to form a dark green solution.

What is the identity of the metal ion?

- A chromium(III)
- **B** iron(II)
- **C** iron(III)
- **D** copper(II)

18. March/2021/Paper_22/No.21

Which statements about strong acids are correct?

- 1 They have a high concentration of OH⁻ ions.
- 2 They have a pH value of 1.
- 3 They completely ionise in water.
- 4 They turn red litmus blue.
- **A** 1 and 3 **B** 1 and 4 **C** 2 and 3 **D** 2 and 4

19. June/2021/Paper_41/No.5

(b)

This question is about salts.

- (a) Salts that are insoluble in water are made by precipitation.
 - Lead(II) iodide, PbI₂, is insoluble in water.
 - All nitrates are soluble in water.
 - All sodium salts are soluble in water.

You are provided with solid lead(II) nitrate, Pb(NO₃)₂, and solid sodium iodide, NaI.

Describe how you would make a pure sample of lead(Π) iodide by precipitation.

You •	r answer should include: practical details a chemical equation for the precipitation reaction.
	407
	Co
	NO SA
	[5]
Nitr	ates decompose when heated.
(i)	When hydrated zinc nitrate is heated, oxygen gas is given off.
	Describe a test for oxygen.
	test
	observations
	[2]
ii)	Complete the equation for the decomposition of hydrated zinc nitrate.

 $2Zn(NO_3)_2 {\bullet} 6H_2O \ \to \ZnO \ + \NO_2 \ + \ O_2 \ + \H_2O$

[2]

(c) Some sulfates are hydrated.

When hydrated sodium sulfate crystals, Na₂SO₄•xH₂O, are heated, they give off water.

$$Na_2SO_4 \cdot xH_2O(s) \rightarrow Na_2SO_4(s) + xH_2O(g)$$

A student carries out an experiment to determine the value of x in Na₂SO₄•xH₂O.

- step 1 Hydrated sodium sulfate crystals are weighed.
- step 2 The hydrated sodium sulfate crystals are then heated.
- **step 3** The remaining solid is weighed.

(i)	Describe how the student can check that all the water has been given off.
	Palpacain

(ii)	In an experiment, 1.61g of Na_2SO_4 • xH_2O is heated until all the water is given off. The mass of Na_2SO_4 remaining is 0.71g.
	$[M_r: Na_2SO_4,142; H_2O,18]$
	Determine the value of \boldsymbol{x} using the following steps.
	 Calculate the number of moles of Na₂SO₄ remaining.
	\bullet Calculate the mass of $\mathrm{H_2O}$ given off.
	• Calculate the number of moles of H ₂ O given off.
	• Determine the value of x .

x =[4]

[Total: 15]

(a)	Nat	rurally occurring a	toms of silver ar	e ¹⁰⁷ Ag and ¹⁰	⁹ Ag.		
	(i)	State the name (given to atoms o	of the same el	ement with di	fferent nucleon numbers.	
((ii)	Complete the tal				ns and electrons in each a	
				¹⁰⁷ ₄₇ Ag	¹⁰⁹ ₄₇ Ag ⁺		
			protons				
			neutrons			0	
			electrons			3	
(i	iii)	Complete this de	efinition of relativ	ve atomic mas	ss. D		[3]
		Relative atomic	mass is the .		mass	of naturally occurring ato	oms
		of an element of	n a scale wher	e the		atom has a mass of exa	ıctly
			units.	0			[3]
(i	iv)	A sample of silve	er has a relative	atomic mass	of 108.0.		Į°.
		Deduce the perc	entage of ¹⁰⁷ Ag	present in this	s sample of s	ilver.	
		**3					[1]
(b)	Silv	er nitrate is a salt	of silver made b	by reacting sil	ver oxide with	n an acid.	
	Wri	te the formula of t	he acid which re	eacts with silv	er oxide to fo	rm silver nitrate.	

20. June/2021/Paper_42/No.2

Silver has an atomic number of 47.

	(i)	Describe what is seen when aqueous silver nitrate is added to aqueous sodium ion NaI(aq).	dide,
			. [1]
	(ii)	Write the ionic equation for the reaction between aqueous silver nitrate and aque sodium iodide. Include state symbols.	eous
			. [3]
			. [-]
(d)		he positive test for aqueous nitrate ions, aqueous sodium hydroxide and one other substa warmed with the nitrate ions.	ance
	Nar	me this other substance and the gas formed.	
	nan	ne of substance	
	nan	me of gas	[2]
(e)	Wh	en silver nitrate is exposed to sunlight, silver is formed.	
	Nar	me the type of reaction which needs light to make it happen.	
			. [1]
(f)	Me	mbers of one homologous series only react with chlorine in the presence of sunlight.	. [1]
	(i)	Name a member of this homologous series.	
	(-)		[4]
			. [1]
	(ii)	Name two products that form when the compound in (i) reacts with chlorine.	
		1	
		2	
			[2]
		[Total	i: 19]

(c) Aqueous silver nitrate is a colourless solution containing $Ag^{\dagger}(aq)$ ions.

P1. June/2021/Paper_43/No.5 This question is about salts.		
(a)	Salts that are soluble in water can be made by the reaction between insoluble carbonates and dilute acids. Zinc sulfate is soluble in water.	
	You are provided with solid zinc carbonate, $\rm ZnCO_3$, and dilute sulfuric acid, $\rm H_2SO_4$.	
	Describe how you would make a pure sample of zinc sulfate crystals.	
	Your answer should include: • practical details • how you would make sure that all the dilute sulfuric acid has reacted • a chemical equation for the reaction.	
	309	
	[5]	

(b) Some sulfates decompose when heated.

When hydrated iron(II) sulfate is heated strongly, sulfur dioxide gas is given off.

(i) Describe a test for sulfur dioxide.

observations

(ii) Complete the equation for the decomposition of hydrated iron(II) sulfate.

.....FeSO₄•7H₂O
$$\rightarrow$$
 Fe₂O₃ + SO₂ + SO₃ +H₂O [2]

[2]

c)	Some chlorides are hydrated.			
	Wh	en hydrated barium chloride crystals, BaC l_2 • x H $_2$ O, are heated they give off water.		
		$BaCl_2 \cdot xH_2O(s) \rightarrow BaCl_2(s) + xH_2O(g)$		
	A st	udent carries out an experiment to determine the value of ${\it x}$ in BaC l_2 • ${\it x}$ H $_2$ O.		
	ste	1 Hydrated barium chloride crystals are weighed.		
	ste	2 The hydrated barium chloride crystals are then heated.		
	ste	o 3 The remaining solid is weighed.		
	(i)	Describe how the student can be sure that all the water is given off.		
		29		
		[2]		
	(ii)	In an experiment, 4.88 g of $BaCl_2 \cdot xH_2O$ is heated until all the water is given off. The mass of $BaCl_2$ remaining is 4.16 g.		
		[M _r : BaCl ₂ , 208; H ₂ O, 18]		
		Determine the value of \boldsymbol{x} using the following steps.		
		$ullet$ Calculate the number of moles of BaC l_2 remaining.		
		mol		
		• Calculate the mass of H ₂ O given off.		
		g		
		• Calculate the number of moles of H ₂ O given off.		
		mol		

x =

[4]

[Total: 15]

Determine the value of x.

22. March/2021/Paper_32/No.8

Aqueous ammonia is an alkali.

(a) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of ammonia.

[2]

(b) Complete the word equation for the reaction of aqueous ammonia with dilute hydrochloric acid.

[1]

(c) Describe the colour change when excess aqueous ammonia is added to an acidified solution of methyl orange.

	(d) Aqueous ammonia reacts with aqueous copper($\!$						
The formula of compound B is CuN ₄ H ₁₆ O ₂ .							
	Com	mass of compound B .					
		type of atom	number of atoms	relative atomic mass	· 		
		copper	1	64	1 × 64 = 64		
		nitrogen	4	14	4 × 14 = 56		
		hydrogen		1			
		oxygen		16			
		499					
		ve molecular mass =[2]					
(e) Ammonia is used in the production of fertilisers.							
	ops are to be grown.						
		[1]					
23. March/2021/Paper_42/No.4 A student wanted to make some zinc chloride crystals.							
	The student followed the procedure shown.						
	step 1 Add excess zinc powder to dilute hydrochloric acid to form aqueous zinc chloride.						
	step 2 Remove unreacted zinc powder from the aqueous zinc chloride.						
	step 3 Heat the solution until it is saturated.						
	step 4 Allow the saturated solution to cool and remove the crystals that form.						
	(a) Write the equation for the reaction in step 1. Include state symbols.						
					[3]		

(b)	Explain why excess zinc powder is added in step 1.					
		[1]				
(c)	Suggest how unreacted zinc powder is removed in step 2.					
		[1]				
(d)	A saturated solution is formed in step 3 .					
	Suggest what is meant by the term saturated solution.					
		[2]				
(e)	Explain why crystals form as the solution cools in step 4 .	[1]				
(f)	Name two zinc compounds which react with dilute hydrochloric acid to form zinc chloride.	ניין				
		[2]				
(g)	If excess calcium metal is used instead of excess zinc powder in step 1 , pure calcium chlorid crystals do not form.					
	Explain why.					
		[1]				

(h) Some salts can be made by titration.

In a titration experiment, 20.0 cm³ of aqueous sodium hydroxide reacts exactly with 25.0 cm³ of 0.100 mol/dm³ dilute sulfuric acid to make sodium sulfate.

$$2NaOH(aq) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$$

(i) Circle the name of the type of reaction that takes place.

decomposition neutralisation precipitation reduction

[1]

- (ii) Calculate the concentration of the aqueous sodium hydroxide in g/dm³ using the following steps.
 - Calculate the number of moles of dilute sulfuric acid used.

..... mc

 Determine the number of moles of sodium hydroxide which react with the dilute sulfuric acid.

..... mol

• Calculate the concentration of the aqueous sodium hydroxide in mol/dm³.

..... mol/dm³

• Calculate the concentration of the aqueous sodium hydroxide in g/dm³.

.....g/dm³ [5]

[Total: 17]

