#### <u>The Particulate nature of matter – 2021 IGCSE 0620</u>

#### 1. June/2021/Paper 11/No.1

Which row describes the arrangement and movement of particles in a liquid?

|   | arrangement of particles | movement of particles         |  |
|---|--------------------------|-------------------------------|--|
| Α | touching and regular     | vibrating                     |  |
| В | touching and random      | ndom moving around each other |  |
| С | touching and regular     | moving around each other      |  |
| D | touching and random      | moving very fast              |  |

#### 2. June/2021/Paper\_12/No.1

lodine changes directly from a grey solid to a purple gas when it is heated.

What is the name of this process?

- A condensation
- **B** evaporation
- **C** separation
- **D** sublimation

#### **3.** June/2021/Paper 13/No.1

A 1 cm<sup>3</sup> sample of substance X is taken. This is sample 1.

X is then converted to a different physical state and a 1 cm<sup>3</sup> sample is taken. This is sample 2.

Sample 2 contains more particles in the 1 cm<sup>3</sup> than sample 1.

Which process caused this increase in the number of particles in 1 cm<sup>3</sup>?

- A boiling of liquid X
- B condensation of gaseous X
- C evaporation of liquid X
- **D** sublimation of solid X

## **4.** June/2021/Paper\_13/No.2

Solid carbon dioxide changes directly into a gas under suitable conditions of temperature and pressure.

Carbon dioxide gas moves from a high concentration to a low concentration.

Which row names these two processes?

|   | changing from<br>solid to gas | moving from a high concentration to a low concentration |
|---|-------------------------------|---------------------------------------------------------|
| Α | evaporation                   | Brownian motion                                         |
| В | evaporation                   | diffusion                                               |
| С | sublimation                   | Brownian motion                                         |
| D | sublimation                   | diffusion                                               |

#### **5.** June/2021/Paper\_21,22&23/No.1

A gas is released at point P in the apparatus shown.



damp universal indicator paper

Which gas turns the damp universal indicator paper red most quickly?

- A ammonia, NH<sub>3</sub>
- **B** chlorine,  $Cl_2$
- C hydrogen chloride, HC1
- D sulfur dioxide, SO<sub>2</sub>

### **6.** June/2021/Paper\_23/No.2

A 1 cm<sup>3</sup> sample of substance X is taken. This is sample 1.

X is then converted to a different physical state and a 1 cm<sup>3</sup> sample is taken. This is sample 2.

Sample 2 contains more particles in the 1 cm<sup>3</sup> than sample 1.

Which process caused this increase in the number of particles in 1 cm<sup>3</sup>?

- **A** boiling of liquid X
- **B** condensation of gaseous X
- **C** evaporation of liquid X
- **D** sublimation of solid X

### 7. March/2021/Paper\_12/No.1

In which changes do the particles move further apart?

$$\begin{array}{ccc} & \mathbb{W} & \mathbb{X} \\ \text{gas} & \underset{\mathsf{Y}}{\rightleftharpoons} & \text{liquid} & \underset{\mathsf{Z}}{\rightleftharpoons} & \text{solid} \\ \end{array}$$

- **A** W and X
- **B** W and Z
- C X and Y
- D Y and 2

### 8. March/2021/Paper\_12/No.3

Impurities change the melting and boiling points of substances.

Sodium chloride is added to a sample of pure water.

How does the addition of sodium chloride affect the melting point and the boiling point of the water?

|   | melting point | boiling point |
|---|---------------|---------------|
| Α | increases     | increases     |
| В | decreases     | decreases     |
| С | increases     | decreases     |
| D | decreases     | increases     |

## **9.** March/2021/Paper\_22/No.1

Which row about a change of state is correct?

|   | change of state            | energy change  | process     |
|---|----------------------------|----------------|-------------|
| Α | solid  ightarrow liquid    | heat given out | melting     |
| В | gas → liquid               | heat taken in  | evaporation |
| С | solid $ ightarrow$ gas     | heat taken in  | sublimation |
| D | $liquid \rightarrow solid$ | heat given out | condensing  |



# **10.** June/2021/Paper\_31/No.2

The table shows the masses of some of the ions in 1000 cm<sup>3</sup> of fruit juice.

| formula of ion                | mass of ion in 1000 cm <sup>3</sup> of fruit juice/mg                                                                       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| NH <sub>4</sub> <sup>+</sup>  | 43                                                                                                                          |
| Ca <sup>2+</sup>              | 79                                                                                                                          |
| Cl-                           | 135                                                                                                                         |
| Li*                           | 1                                                                                                                           |
| Mg <sup>2+</sup>              | 80                                                                                                                          |
| NO <sub>3</sub> -             | 35                                                                                                                          |
| PO <sub>4</sub> <sup>3-</sup> | 120                                                                                                                         |
| K <sup>+</sup>                | 575                                                                                                                         |
| Na⁺                           | 120                                                                                                                         |
| SO <sub>4</sub> <sup>2-</sup> | 105                                                                                                                         |
|                               | NH <sub>4</sub> + Ca <sup>2+</sup> C <i>l</i> - Li+ Mg <sup>2+</sup> NO <sub>3</sub> - PO <sub>4</sub> <sup>3-</sup> K+ Na+ |

| (a) | Answer these    | nuestions us   | ing only th | e information    | in the t | table  |
|-----|-----------------|----------------|-------------|------------------|----------|--------|
| (a) | Allowel these t | วุนธิธิแบบร นธ | ing only u  | e illioilliation |          | Lable. |

| (i) | State which negative ion has the highest mass in 1000 cm <sup>3</sup> of fruit juice. |
|-----|---------------------------------------------------------------------------------------|
|     |                                                                                       |

|  | [1] |
|--|-----|
|  |     |
|  |     |

| (ii) | Give the formulae of the ions in ammonium sulfate. |     |
|------|----------------------------------------------------|-----|
|      |                                                    |     |
|      | and                                                | [1] |
|      |                                                    |     |

(b) Describe a test for lithium ions.

| test         |     |
|--------------|-----|
| observations |     |
|              | [2] |

|                           | names of two <b>other</b> |                               |                                                       |        |
|---------------------------|---------------------------|-------------------------------|-------------------------------------------------------|--------|
|                           |                           |                               |                                                       |        |
| <b>11.</b> June/2021/Pape | er_32/No.2                |                               | 1000 cm³ of fruit juice.                              | [2]    |
|                           | name of ion               | formula of ion                | mass of ion in 1000 cm <sup>3</sup> of fruit juice/mg |        |
|                           | ammonium                  | NH <sub>4</sub> <sup>+</sup>  | 15                                                    |        |
|                           |                           | Ca <sup>2+</sup>              | 71                                                    |        |
|                           | chloride                  | Cl-                           | 135                                                   |        |
|                           | magnesium                 | Mg <sup>2+</sup>              | 160                                                   |        |
|                           | nitrate                   | NO <sub>3</sub> -             | 2                                                     |        |
|                           | phosphate                 | PO <sub>4</sub> <sup>3-</sup> | 63                                                    |        |
|                           | potassium                 | K <sup>+</sup>                | 184                                                   |        |
|                           | sodium                    | Na <sup>+</sup>               | 3                                                     |        |
|                           |                           | SO <sub>4</sub> <sup>2</sup>  | 85                                                    |        |
|                           | nese questions usin       |                               | ition in the table.<br>ass in 1000 cm³ of fruit juice |        |
| (ii) Give                 | the formulae of the       |                               | ulfata                                                | [1]    |
| (ii) Give                 |                           |                               | nd                                                    | [1]    |
| (iii) Calcu               | ulate the mass of ma      | agnesium ions in              | 250 cm³ of fruit juice.                               |        |
|                           |                           |                               | mass =                                                | mg [1] |

(c) lons of the element potassium, K, are present in most fertilisers.

| (b) | Describe a test for calcium ions.                                                                              |         |
|-----|----------------------------------------------------------------------------------------------------------------|---------|
|     | test                                                                                                           |         |
|     | observations                                                                                                   |         |
|     |                                                                                                                | [2]     |
| (c) | Ammonium ions, NH <sub>4</sub> <sup>+</sup> , are present in most fertilisers. Ammonium ions contain nitrogen. |         |
|     | Name two <b>other</b> elements present in most fertilisers.                                                    |         |
|     | 1                                                                                                              |         |
|     | 2                                                                                                              | <br>[2] |
|     |                                                                                                                | [4]     |
| (d) | A student heated a mixture of ammonium chloride and sodium hydroxide in a test-tube.                           |         |
|     | $NH_4Cl + NaOH \rightarrow NH_3 + NaCl + H_2O$                                                                 |         |
|     |                                                                                                                |         |
|     |                                                                                                                |         |

mixture of ammonium chloride and sodium hydroxide

Pungent-smelling ammonia gas is given off.

Describe one other observation that can be made.

[1]

(e) Ammonia reacts with chlorine.

Complete the equation for this reaction.

....
$$NH_3 + ....Cl_2 \rightarrow N_2 + 6HCl$$
 [2]

|                           |                     |                               | f the class smell the ammo                            | лна.        |
|---------------------------|---------------------|-------------------------------|-------------------------------------------------------|-------------|
| Explain the               | ese observations (  | using the kinetic             | particle model.                                       |             |
|                           |                     |                               |                                                       |             |
|                           |                     |                               |                                                       |             |
|                           |                     |                               |                                                       |             |
|                           |                     |                               |                                                       |             |
|                           |                     |                               |                                                       | [3]         |
|                           |                     |                               |                                                       | [Total: 13] |
|                           |                     |                               | <b>(0</b> )                                           | [10tal. 15] |
| <b>12.</b> June/2021/Pape | r_33/No.2           |                               | 40                                                    |             |
| The table show            | s the masses of so  | ome of the ions in            | 1000 cm <sup>3</sup> of fruit juice.                  |             |
|                           |                     | 1                             | 70.                                                   |             |
|                           | name of ion         | formula of ion                | mass of ion in 1000 cm <sup>3</sup> of fruit juice/mg |             |
|                           | ammonium            | NH <sub>4</sub> <sup>+</sup>  | 6                                                     |             |
|                           | calcium             | Ca <sup>2+</sup>              | 73                                                    |             |
|                           | chloride            | CI-                           | 238                                                   |             |
|                           | magnesium           | Mg <sup>2+</sup>              | 77                                                    |             |
|                           |                     | NO <sub>3</sub> -             | 10                                                    |             |
|                           | phosphate           | PO <sub>4</sub> <sup>3-</sup> | 20                                                    |             |
|                           | potassium           | K⁺                            | 419                                                   |             |
| •                         |                     | Na⁺                           | 3                                                     |             |
|                           | sulfate             | SO <sub>4</sub> <sup>2-</sup> | 10                                                    |             |
| (a) Answer the            | ese questions using | g only the informa            | ition in the table                                    |             |
|                           |                     |                               |                                                       |             |
| (i) State                 | which negative ion  | has the highest r             | nass in 1000 cm <sup>3</sup> of fruit juid            | e.          |
|                           |                     |                               |                                                       | [1]         |
| (ii) Give t               | he formulae of the  | ions in sodium nit            | rate.                                                 |             |
|                           |                     |                               | nd                                                    | [1]         |
|                           |                     | a                             | IIW                                                   | [1]         |

(f) A small beaker of aqueous ammonia is placed at the front of a classroom.

(iii) Calculate the mass of ammonium ions in 250 cm<sup>3</sup> of fruit juice.

mass = ..... mg [1]

(b) Describe a test for chloride ions.

observations [2]



(i) State the names of two other elements that are in most fertilisers.

| 1 |     |
|---|-----|
| 2 |     |
|   | [2] |

| (ii)  | Explain why farmers put fertilisers on fields where crops are to be grown. |                                                                                                                                                                                                                        |             |  |  |
|-------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
|       |                                                                            | [1]                                                                                                                                                                                                                    |             |  |  |
| (d) A | ۹ st                                                                       | tudent heated ammonium sulfate with sodium hydroxide in a test-tube.                                                                                                                                                   |             |  |  |
| (     | i)                                                                         | Complete the equation for this reaction.                                                                                                                                                                               |             |  |  |
|       |                                                                            | $(NH_4)_2SO_4 +NaOH \rightarrowNH_3 + Na_2SO_4 + 2H_2O$                                                                                                                                                                | [2]         |  |  |
| (i    | i)                                                                         | Concentrated aqueous ammonia releases fumes of ammonia gas.                                                                                                                                                            |             |  |  |
|       |                                                                            | A long glass tube is set up as shown.                                                                                                                                                                                  |             |  |  |
|       |                                                                            | cotton wool soaked in concentrated aqueous ammonia  At first, the red litmus paper does not turn blue.  After a short time, the litmus paper turns blue.  Explain these observations using the kinetic particle model. | [3]         |  |  |
|       |                                                                            | [                                                                                                                                                                                                                      | [Total: 13] |  |  |