Stoichiometry - 2023 IGCSE Chemistry 0620

1. Nov/2023/Paper 0620/11/No.7

Which equations are balanced?

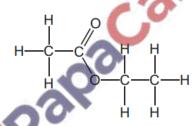
1 Fe₂O₃ + 3CO
$$\rightarrow$$
 2Fe + 3CO₂

2
$$ZnCO_3 + 2HCl \rightarrow ZnCl_2 + CO_2 + 2H_2O$$

3
$$Mg(NO_3)_2 + NaOH \rightarrow Mg(OH)_2 + 2NaNO_3$$

4
$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$$

2. Nov/2023/Paper 0620/11/No.8


The equation for the combustion of methane is shown.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Which mass of methane produces 36 g of water?

3. Nov/2023/Paper_0620/12/No.8

The diagram shows the structure of a molecule of ethyl ethanoate.

What is the molecular formula of a molecule of ethyl ethanoate?

$$\mathbf{C} = C_4(H_2)_2(O_2)$$

4. Nov/2023/Paper 0620/12/No.9

The formula of a compound containing element X is $Na_2X_2O_3$.

The relative formula mass of the compound is 158.

What is the relative atomic mass of X?

5. Nov/2023/Paper_0620/13/No.7

The equation represents the reaction between solid magnesium oxide and dilute hydrochloric acid to form magnesium chloride and water.

MgO + 2HC
$$l \rightarrow$$
 MgC l_2 + H₂O

Which row shows the state symbols for hydrochloric acid, magnesium chloride and water?

	HC1	MgCl ₂	H ₂ O		
Α	(aq)	(aq)	(1)		
В	(aq)	(1)	(1)		
С	(1)	(aq)	(aq)		
D	(1)	(1)	(aq)		

6. Nov/2023/Paper_0620/13/No.8

Calcium nitrate has the formula Ca(NO₃)₂.

What is the relative formula mass, M_r , of calcium nitrate?

- **A** 102
- **B** 150
- 164
- D 204

7. Nov/2023/Paper_0620/13/No.9

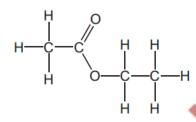
What is the equation for the reaction between calcium and chlorine?

- A 2Ca + C $l \rightarrow Ca_2Cl$
- **B** $2Ca + Cl_2 \rightarrow Ca_2Cl_2$
- **C** Ca + C $l \rightarrow$ CaCl
- **D** Ca + $Cl_2 \rightarrow CaCl_2$

8. Nov/2023/Paper 0620/21/No.6

Which equations are balanced?

- 1 Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂
- 2 $ZnCO_3 + 2HCl \rightarrow ZnCl_2 + CO_2 + 2H_2O$
- 3 $Mg(NO_3)_2 + NaOH \rightarrow Mg(OH)_2 + 2NaNO_3$
- 4 $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$
- A 1 and 2
- **B** 1 and 4 **C** 2 and 3
- **D** 3 and 4


9. Nov/2023/Paper_0620/21/No.7

Which row shows the formulae of sodium carbonate, zinc nitrate and ammonium sulfate?

	sodium carbonate	zinc nitrate	ammonium sulfate
Α	Na ₂ CO ₃	ZnNO ₃	(NH ₄) ₂ SO ₄
В	Na ₂ CO ₃	Zn(NO ₃) ₂	(NH ₄) ₂ SO ₄
С	NaCO₃	ZnNO ₃	(NH ₃) ₂ SO ₄
D	NaCO₃	Zn(NO ₃) ₂	(NH ₃) ₂ SO ₄

10. Nov/2023/Paper_0620/22/No.7

The diagram shows the structure of a molecule of ethyl ethanoate.

What is the molecular formula of a molecule of ethyl ethanoate?

- A CHO
- **B** C₄H₈O₂
- $C C_4(H_2)_2(O_2)$
- D C₂H₄O

11. Nov/2023/Paper_0620/22/No.8

A hydrocarbon contains 85.7% of carbon by mass.

What is the empirical formula of the hydrocarbon?

- A CH₂
- B CH₄
- C C₂H₅
- C₃H₆

12. Nov/2023/Paper_0620/22/No.9

The formula of a compound containing element X is $Na_2X_2O_3$.

The relative formula mass of the compound is 158.

What is the relative atomic mass of X?

- **A** 32
- **B** 59.5
- **C** 64
- **D** 119

13. Nov/2023/Paper 0620/23/No.7

The equation represents the reaction between solid magnesium oxide and dilute hydrochloric acid to form magnesium chloride and water.

MgO + 2HC
$$l \rightarrow$$
 MgC l_2 + H₂O

Which row shows the state symbols for hydrochloric acid, magnesium chloride and water?

	HC1	MgCl ₂	H ₂ O
Α	(aq)	(aq)	(1)
В	(aq)	(I)	(1)
С	(I)	(aq)	(aq)
D	(l)	(I)	(aq)
	/2023/Paper_ iich substanc air		
В	graphite		03
С	oxygen		X
D	water		

14. Nov/2023/Paper 0620/23/No.9

- A air
- B graphite
- C oxygen
- **D** water

15. Nov/2023/Paper 0620/23/No.10

1.0 mol of silver nitrate, AgNO3, contains 1.2×10^{24} ions.

How many ions are there in 0.25 mol of iron(III) oxide, Fe₂O₃?

- **A** 1.5×10^{23} **B** 3.0×10^{23} **C** 7.5×10^{23} **D** 3.0×10^{24}

4

16. Nov/2023/Paper_0620/31/No.3(a)

(a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

year	concentration of air pollutant in ng/1000 cm ³														
	ammonia	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide										
2019	10.6	12.0	15.3	30.1	20.5										
2020	11.2	13.0	21.6	28.2	20.0										
2021	14.3	15.2	23.5	26.5	25.0										
2022	15.5	9.0	14.0	25.2	18.2										

(1)	Name the pollutant that has the lowest concentration in 2019
(ii)	Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.
	[1]

17. Nov/2023/Paper_0620/32/No.3(a)

2019.

(a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

year	concentration of air pollutant in ng/1000 cm ³														
	carbon monoxide	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide										
2019	2.5	12.0	19.6	28.0	30.0										
2020	2.0	13.5	21.8	30.1	21.7										
2021	1.8	14.8	18.5	27.5	23.8										
2022	1.6	16.0	22.7	26.2	25.0										

(i)	Name the oxide pollutant that has the highest concentration in 2021.
	[1]
(ii)	Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.
	[1]
(iii)	Calculate the average mass, in ng, of particulates in a 250 cm ³ sample of polluted air in

mass = ng [1]

18. Nov/2023/Paper_0620/33/No.3(a)

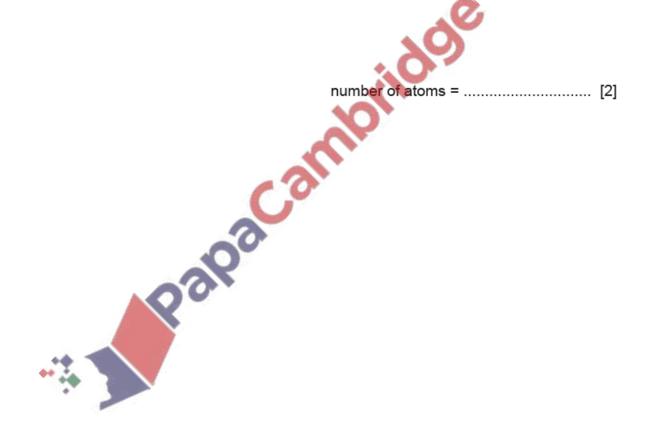
(a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

year	concentration of air pollutant in ng/1000 cm ³														
	carbon monoxide	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide										
2019	5.3	22.0	15.6	19.0	20.0										
2020	4.1	13.5	14.8	20.1	18.2										
2021	5.8	14.8	22.7	23.5	16.2										
2022	2.6	18.0	10.9	26.2	14.0										

(i)	Name the pollutant which has the highest concentration in 2019.
	[1]
····	
(11)	Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.
	[1]

(iii) Calculate the average mass, in ng, of hydrocarbons in a 200 cm³ sample of polluted air in 2019.


19. Nov/2023/Paper_0620/41/No.2(b)

Boron and aluminium are Group III elements.

- (b) The relative atomic mass of boron to one decimal place is 10.8.
 - (i) Determine the relative abundance of ¹⁰B present in boron. Give your answer as a percentage.

																									%	[1]
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	70	ניו

(ii) Use the relative atomic mass of boron to calculate the number of atoms in 0.540 g of boron. Give your answer in standard form.

20. Nov/2023/Paper_0620/41/No.4(c, d)

Aqueous hydrogen peroxide, H_2O_2 , slowly forms water and oxygen at room temperature and pressure, r.t.p. This reaction is catalysed by manganese(IV) oxide.

The equation is shown.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

(c) Manganese(IV) oxide is added to 20 cm³ of aqueous hydrogen peroxide. The total volume of oxygen gas produced is 72 cm³ at r.t.p.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

Calculate the concentration of the aqueous hydrogen peroxide in g/dm³ using the following steps.

Calculate the number of moles of oxygen gas produced.

..... mo

Determine the number of moles of hydrogen peroxide which reacts.

..... mc

• Calculate the concentration of aqueous hydrogen peroxide in mol/dm3.

..... mol/dm³

• Calculate the concentration of aqueous hydrogen peroxide in g/dm³.

..... g/dm³ [5]

(d) Suggest the identity of one other metal oxide which also catalyses this reaction.

......[1]

21. Nov/2023/Paper_0620/43/No.4(c)

This question is about sulfuric acid and salts that are made from sulfuric acid.

(c) Nickel(II) sulfate crystals contain water of crystallisation.

When nickel(II) sulfate crystals, NiSO₄•xH₂O, are heated, they give off water.

$$NiSO_4 \cdot xH_2O(s) \rightarrow NiSO_4(s) + xH_2O(g)$$

A student carries out an experiment to determine the value of x in NiSO₄•xH₂O.

- step 1 Nickel(II) sulfate crystals are weighed.
- step 2 Nickel(II) sulfate crystals are heated.
- step 3 The remaining solid is allowed to cool and is then weighed.
- step 4 The remaining solid is heated again, allowed to cool and is then weighed.
- step 5 Step 4 is repeated until there is no change in mass.
- (i) State the term used to describe crystals that contain water of crystallisation.

.....[1]

(ii) State why step 4 is repeated until there is no change in mass.

[1]

(iii) In an experiment, 0.454 g of nickel(II) sulfate crystals, NiSO₄•xH₂O, is used. The mass of anhydrous nickel(II) sulfate, NiSO₄, remaining is 0.310 g.

[M_r: NiSO₄, 155; H₂O, 18]

Determine the value of x in NiSO₄•xH₂O.

Use the following steps.

• Calculate the number of moles of NiSO₄ remaining.

moles of NiSO₄ =

Calculate the mass of H₂O given off.

mass of H₂O = g

Calculate the number of moles of H₂O given off.

moles of H₂O =

Calculate the value of x.

