

Cambridge IGCSE[™](9–1)

14653	CENTRE NUMBER	CANDIDATE NUMBER	
	CANDIDATE NAME		

εμίσικι

Paper 4 Theory (Extended)

October/November 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions. •
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. •
- Write your name, centre number and candidate number in the boxes at the top of the page. •
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid. •
- Do not write on any bar codes. •
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

BLANK PAGE

2

© UCLES 2024

* 000080000003 *

1 The formulae of the molecules **A** to **I** are shown in Table 1.1.

molecule	formula
Α	C_2H_4
В	C_2H_5OH
С	CO
D	CO ₂
E	Cl_2
F	NO ₂
G	N ₂
Н	O ₂
I	SO ₂

Answer the following questions about the molecules, **A** to **I**. Each letter may be used once, more than once or not at all.

State which of the molecules A to I	1
-------------------------------------	---

(a)	is an element with a triple bond	[1]
(b)	is a product of photosynthesis	[1]
(c)	is used as a fuel	[1]
(d)	turns limewater milky	[1]
(e)	undergoes a substitution reaction with alkanes	[1]
(f)	is a colourless liquid at r.t.p.	[1]
(g)	is unsaturated	[1]
(h)	is 21% of clean, dry air	[1]
(i)	is a reactant in the Haber process.	[1]
	[Total	: 9]

© UCLES 2024

龖

2		minium is manufactured by the electrolysis of aluminium oxide.
-		State the name of the main ore of aluminium.
		[1]
	(b)	Name the substance mixed with aluminium oxide to reduce the operating temperature of the process.
		[1]
	(c)	Explain why the molten mixture in (b) conducts electricity.
		[1]

(d) Table 2.1 contains some information about the processes which take place at the anode and the cathode.

Table 2.1	

anode	cathode
$2O^{2-} \rightarrow O_2$ +e ⁻	

(i) Complete Table 2.1:

* 000080000004 *

- Write the number of electrons needed to balance the ionic half-equation for the reaction at the anode.
- Write the ionic half-equation for the reaction at the cathode.

[3]

(ii) State why the process at the anode is an oxidation.

(iii) Oxygen is formed at the anode.

Explain why the main gas given off at the anode is carbon dioxide and **not** oxygen.

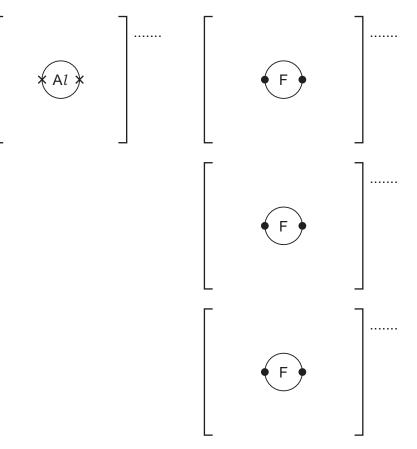
(e) State why aluminium is used in food containers.

	[1]
	11

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN


* 0000800000005 *

(f) Aluminium reacts with fluorine to form the ionic compound aluminium fluoride.

Complete the dot-and-cross diagram in Fig. 2.1 of the ions in aluminium fluoride.

Give the charges on the ions.

[3]

[Total: 13]

[Turn ov<u>er</u>

* 000080000006 *

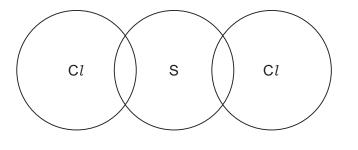
3 Sulfur forms two chlorides, **P** and **Q**.

Chloride **P** has the formula S_2Cl_2 . Chloride **Q** has the formula SCl_2 .

(a) Both chlorides are covalently bonded and have low melting points.

Suggest, in terms of attraction between particles, why these chlorides have low melting points.

6


(b) Chloride **P**, S_2Cl_2 , forms when sulfur reacts with chlorine.

Write the symbol equation for this reaction.

......[1]

(c) Complete the dot-and-cross diagram in Fig. 3.1 of a molecule of chloride \mathbf{Q} , SC l_2 .

Show outer electrons only.

(d) Chloride **P** is converted to chloride **Q** by reaction with chlorine in a closed system. The reversible reaction reaches an equilibrium.

$$\begin{array}{c} S_2 C l_2(g) \ + \ C l_2(g) \end{array} \rightleftharpoons \begin{array}{c} 2 S C l_2(g) \\ \textbf{P} & \textbf{Q} \end{array}$$

The forward reaction is exothermic.

Suggest **two** changes to the conditions which will result in a decrease in the concentration of chloride **Q** at equilibrium.

1 2 [2]

[3]

(e) The rate of the forward reaction in (d) is determined by collision theory.

The rate of reaction depends upon two factors:

- the frequency of collisions between particles
- the proportion of collisions which have energy greater than or equal to the activation energy.
- (i) Define the term activation energy.
-[1]
- (ii) Give the symbol for activation energy.
 -[1]
- (iii) Complete Table 3.1 to show the effect, if any, when the conditions are changed.

Use only the words increases, decreases or no change.

Table 3.1

change to conditions	effect on the frequency of collisions between particles	effect on the proportion of collisions which have energy greater than or equal to the activation energy
concentration of chlorine is increased		
temperature is increased		
a catalyst is added		

[5]

[Turn over

The reaction of chloride **P** with chlorine is a redox reaction. (f)

$$\begin{array}{c} \mathsf{S}_2\mathsf{C}l_2(\mathsf{g}) \ + \ \mathsf{C}l_2(\mathsf{g}) \end{matrix} \rightleftharpoons 2\mathsf{S}\mathsf{C}l_2(\mathsf{g}) \\ \mathbf{P} \qquad \mathbf{Q} \end{array}$$

8

The oxidation number of Cl in chloride **P** and chloride **Q** is -1.

Use oxidation numbers to explain why:

sulfur is oxidised in the forward reaction chlorine is oxidised in the reverse reaction.

[Total: 19]

[4]

0971/42/O/N/24

Question 4 starts on the next page.

9

4 Silver bromide, AgBr, is made when aqueous silver ethanoate, CH₃COOAg, is added to aqueous sodium bromide, NaBr.

10

The equation for the reaction is shown in **equation 1**.

equation 1 $CH_3COOAg + NaBr \rightarrow CH_3COONa + AgBr$

The method includes the following steps.

- **step 1** Add 200.0 cm³ of $0.0500 \text{ mol}/\text{dm}^3 \text{ CH}_3\text{COOAg}$ to a beaker. This volume contains 0.0100 mol of Ag⁺ ions.
- step 2 Add 50.0 cm³ of aqueous NaBr. This volume contains 0.0100 mol of Br⁻ ions. A precipitate forms.
- step 3 Filter the mixture.
- **step 4** Dry the solid residue until all the water is removed.
- step 5 Record the mass of the dry residue.
- (a) Complete the ionic equation for the reaction by adding the missing state symbols.

$$Ag^{+}(\dots) + Br^{-}(\dots) \rightarrow AgBr(\dots)$$
[1]

- (b) Name a different aqueous silver salt which could be used in step 1.
-[1]
- (c) Use the information in **step 2** to calculate the concentration of aqueous NaBr.

concentration = mol/dm³ [1]

(d) State the colour of the precipitate which forms in **step 2**.

......[1]

(e) Use the information in **step 1**, **step 2** and **equation 1** to determine the number of moles of AgBr formed. Use this value to calculate the mass of AgBr formed.

11

number of moles of AgBr =

mass of AgBr = g [3]

(f) Name the salt dissolved in the filtrate in step 3.
(g) The recorded mass of the dry residue in step 5 is greater than the mass calculated in (e) because a step is missing from the procedure.
(i) Suggest the missing step.
(ii) Name the substance responsible for the greater mass of the dry residue.

(h) Barium sulfate can be made by the same method but with different aqueous solutions.

- (ii) Write the balanced symbol equation for this reaction.

[2] [Total: 14]

[Turn over

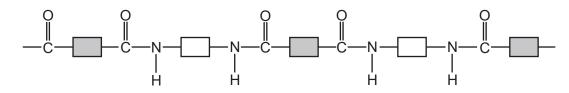
			80000012* 12 12	DO NOT WRITE IN THIS MARGIN
5			s are manufactured by cracking larger alkane molecules.	N THIS
	(a)	Sta	ate the source of the large alkane molecules used in cracking.	RITE
			[1] ≯ ₽
	(b)	Sta	te two conditions needed for cracking large alkane molecules.	DO
		1		
		2		
				[2] ¥₩
	(c)		tion one molecule of dodecane, $C_{12}H_{26}$, is cracked, three molecules of but-1-ene and or er product are formed.	DO NOT WRITE IN THIS MARGIN
		(i)	Use molecular formulae to complete the symbol equation for this reaction.	TON C
			$C_{12}H_{26} \rightarrow \dots + \dots$	
				[2]
		(ii)	Suggest the type of chemical reaction which happens during cracking.	IARGIN
			[[1] ≥ SIHL
	(d)	Pro	opene will undergo polymerisation.	OT WRITE IN THIS MARGIN
		(i)	Suggest the name of the polymer formed from propene.	OT WR
			[[1] Ž
		(ii)	Draw part of this polymer molecule to show three repeat units.	-
		()		Z
				[C DO NOT WRITE IN THIS MARGIN
			[[3] ^L o _v o
		(iii)	State the type of polymerisation propene undergoes.	ă
			[[1]
			[Total: 1	MARGIN
				S_

Question 6 starts on the next page.

13

DO NOT WRITE IN THIS MARGIN

[1]

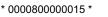

[2]

DO NOT WRITE IN THIS MARGIN

6 Polyamides and polyesters are polymers.

Polyamides can occur naturally or can be manufactured.

(a) Part of the structure of a polyamide is shown in Fig. 6.1.


- (i) On Fig. 6.1, draw a circle around **one** amide linkage.
- (ii) Complete Fig. 6.2 to show the structures of the two monomers needed to make the polymer in Fig. 6.1. Show all of the atoms and all of the bonds in the functional groups.

- Fig. 6.2
- (iii) Name the other product formed in this polymerisation.
 [1]
 (iv) State the term given to natural polyamides.
 [1]
 (v) Name the type of monomers which are used to make natural polyamides.
 [1]

(vi) One of the monomers which forms part of a natural polyamide has three carbon atoms.

15

Complete Fig. 6.3 to show the displayed formula of this monomer.

Fig. 6.3

(b) PET is a polyester.

- (ii) Draw part of the structure of PET which shows two repeat units.

Show all of the atoms and all of the bonds in the linkages.

[3]

[Total: 14]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2024

DO NOT WRITE IN THIS MARGIN

		1																					
	NIII	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	Кr	krypton 84	54	Xe	xenon 131	86	Rn	radon -	118	og	oganesson	I
	۸II				6	LL	fluorine 19	17	Cl	chlorine 35.5	35	Ъ	bromine 80	53	Ι	iodine 127	85	At	astatine -	117	Ъ	tennessine	I
	N				80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	Те	tellurium 128	84	Ъо	polonium –	116	L<	livermorium	I
	>				7	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	E	bismuth 209	115	Mc	moscovium	I
	≥				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium	I
	≡				5	В	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204	113	ЧN	nihonium	I
											30	Zn	zinc 65	48	Cq	cadmium 112	80	Hg	mercury 201	112	Cu	copernicium	I
											29	Cu	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium	I
Group											28	ïZ	nickel 59	46	Ъd	palladium 106	78	Ę	platinum 195	110	Ds	darmstadtium	I
Gro											27	ပိ	cobalt 59	45	Rh	rhodium 103	17	Ir	iridium 192	109	Mt	meitnerium	I
		-	т	hydrogen 1							26	Ее	iron 56	44	Ru	ruthenium 101	76	Os	osmium 190	108	Hs	hassium	I
					-						25	Mn	manganese 55	43	р	technetium -	75	Re	rhenium 186	107	Bh	bohrium	I
						loc	SS				24	ŗ	chromium 52	42	Mo	molybdenum 96	74	8	tungsten 184	106	Sg	seaborgium	I
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Db	dubnium	I
						ato	rela				22	i	titanium 48	40	Zr	zirconium 91	72	Ħ	hafnium 178	104	Rf	rutherfordium	I
								_			21	Sc	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ي ا	strontium 88	56	Ba	barium 137	88	Ra	radium	I
	_				3	:	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ч	francium	I
								-			-			-			-			-			_

16

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ч	ц	Tm	γb	Lu
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	139	140	141	144	I	150	152	157	159	163	165	167	169	173	175
	89	06	91	92	93	94	95	96	67	98	66	100	101	102	103
actinoids	Ac	Ч	Ра		ЧN	Pu	Am	Cm	Ŗ	ç	Es	ЕШ	Md	No	Ļ
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	I	232	231	238	I	I	I	I	I	I	I	I	I	I	I

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).

DO NOT WRITE IN THIS MARGIN

© UCLES 2024

The Periodic Table of Elements

0971/42/O/N/24

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN