

Cambridge International Examinations Cambridge International General Certificate of Secondary Education (9–1)

CHEMISTRY

Paper 4 Theory (Extended) MARK SCHEME Maximum Mark: 80 0971/04 For Examination from 2018

Specimen

From 2018 the mark scheme design/layout has improved. The content and marks remain the same.

This document consists of 6 printed pages.

mark scheme abbreviations

• •	separates marking points
1	alternative responses for the same marking point
not	do not allow
allow	accept the response
ecf	error carried forward
avp	any valid point
ora	or reverse argument
owtte	or words to that effect
underline	actual word given must be used by candidate (grammatical variants excepted)
()	the word / phrase in brackets is not required but sets the context
max	indicates the maximum number of marks
Any [number] from:	accept the [number] of valid responses
note:	additional marking guidance

1	(a)	Α				[1]
	(b)	Da	nd F note: bo	oth needed for mark		[1]
	(c)	Е				[1]
	(d)	в				[1]
	(e)	с				[1]
2	(a)	(i)	same number	of protons and electrons		[1]
		(ii)	all have the sa	me number of protons / sar	ne proton number / same atomic number	[1]
		(iii)			mber / same atomic number; cleon number / different mass number;	[1] [1]
	(b)	(i)	2, 8, 5			[1]
		(ii)	because it is in	ause it accepts electrons Group V or 5e in outer she h non-metal and reason for		evel / [1]
3	(a)	(i)		o nitrogen atoms; note: can each nitrogen atom;	be any combination of dots or crosses	[1] [1]
		(ii)		solid	gas	
			pattern:	regular / lattice	random / irregular / no pattern;	[1]
			distance:	close	far apart / spread out;	[1]
			movement:	vibrate / fixed position	moving;	[1]
			note: comparis	on must be made		
	(b)	(b) particles have more energy / move faster; collide harder / collide more frequently / more collisions / collide with more force; allow: molecules instead of particles		[1] [1]		
	 (c) (i) nitrogen has smaller M_r; nitrogen (molecules) move faster (than chlorine molecules) / ora; note: comparison must be made 			[1] [1]		
		(ii)	(at higher temp	perature) molecules move fa	aster / have more energy	[1]

3

4	(a) (i	 Any two from: chromium is harder; has higher density; has higher melting point / boiling point; 			
		stronger; ora;	[2]		
		note: comparison must be made			
	(11	Any two from: sodium is more reactive; chromium has more than one oxidation state, sodium has one; chromium forms coloured compounds, sodium compounds are white; sodium reacts with cold water, chromium does not; chromium forms complex ions, sodium does not; chromium has catalytic properties, sodium does not; note: difference must be clear	[2]		
	(b) (i	 Any two from: appearance / shiny / more attractive / decoration; resists corrosion / resists rusting; hard surface; 	[2]		
			[2]		
	(ii) Cr ₂ (SO ₄) ₃ ignore: correct charges on ions	[1]		
	(iii) Cr^{3+} + 3e \rightarrow Cr note: one mark for equation and one mark for correct balancing	[2]		
	(iv	oxygen / O ₂	[1]		
	(v	 to replace chromium ions (used to plate steel) / chromium ions used up; copper ions replaced from copper anode; 	[1] [1]		
5	Fe ₂ O ₃ 2Fe ₂ C Fe ₂ O ₃ C + O	dox equation from: $+ 3CO \rightarrow 2Fe + 3CO_2$ $b_3 + 3C \rightarrow 4Fe + 3CO_2$ $+ 3C \rightarrow 2Fe + 3CO$ $c_2 \rightarrow CO_2$ $C \rightarrow 2CO$	[1]		
	one acid/base equation: CaO + SiO ₂ \rightarrow CaSiO ₃ CaCO ₃ + SiO ₂ \rightarrow CaSiO ₃ + CO ₂				
	Any three additional equations or comments from: carbon <u>burns</u> or <u>reacts</u> to form carbon dioxide; this reaction is <u>exothermic</u> or <u>produces heat</u> ; carbon dioxide is <u>reduced</u> to carbon monoxide; carbon monoxide <u>reduces</u> hematite to iron; carbon <u>reduces</u> hematite to iron; limestone removes silica to form slag; limestone decomposes;				

6	(a)	(pa allo	er / centrifuge / decant; irtially) evaporate / heat / boil; ow to crystallise / cool / let crystals form; crystals / dry between filter paper / leave in a warm place to dry;	[1] [1] [1] [1]
	(b)	(i)	number of moles of HCl used = $0.04 \times 2 = 0.08$; number of moles CoCl ₂ formed = 0.04 ; number of moles CoCl ₂ .6H ₂ O formed = 0.04 ; maximum yield of CoCl ₂ .6H ₂ O = 9.52 ; allow: 9.5 allow: ecf on number of moles of HCl	[1] [1] [1] [1]
			number of moles of HC <i>l</i> used = 0.08 note: must use their value allow: ecf number of moles of CoCO ₃ in 5.95g of cobalt(II) carbonate = $5.95/119 = 0.05$;	[1]
		(ii)	0.05 > 0.04 or stated in words; allow: ecf on number of moles of CoC l_2 formed	[1]
7	(a)	 (a) rates equal; concentrations do not change / macroscopic properties remain constant; 		[1] [1]
	(b)) endothermic and because this direction is favoured by high temperatures; note: reason is required		
	(c)	(i)	move to left hand side / reactants favoured and because bigger volume / more moles left hand side note: reason is required	s on [1]
		(ii)	less (yellow) solid / more (dark brown) liquid / green gas visible / turns darker brov smell chlorine allow: ecf from (c)(i)	vn / [1]
	(d)	 (d) (bond breaking =) 151 + 242 = <u>393;</u> (bond making =) 208 × 2 = <u>-416;</u> not: 416 (overall =) 393 - 416 = <u>-23;</u> allow: ecf note: sign must be given (e) Any two from: diagram shows exothermic reaction; activation energy shown; reactants and products labelled / both axes labelled; note: labelling is one mark only allow: ecf from (d) 		[1] [1] [1]
	(e)			[2]

8	(a)	san con sim san	v three from: ne general formula; secutive members differ by CH ₂ ; ilar chemical properties; ne functional group; sical properties vary in a predictable way / give trend such as mp increases with n;	[3]			
	(b)	(i)	not: general formula	[1]			
			different structures / structural formulae;	[1]			
		(ii)	CH_3 - CH_2 - $CH(OH)$ - CH_3 / (CH_3) ₃ C-OH allow: butan-2-ol and 2-methylpropan-2-ol	[1]			
	(c)	(i)	(acidified) potassium manganate(VII) allow: oxygen / air / (acidified) potassium chromate(VI)	[1]			
		(ii)	carboxylic acid allow: aldehyde / ketone	[1]			
		(iii)	CH_3 - CH_2 - $COOH / C_3H_7COOH / C_4H_8O_2$ allow: C_4H_7OOH allow: ecf on (c)(ii)	[1]			
	(d)	(i)	measure <u>volume</u> of gas; measure time;	[1] [1]			
		(ii)	increase in temperature / more yeast present / yeast multiplies	[1]			
		(iii)	glucose used up; concentration of ethanol high enough to kill yeast;	[1] [1]			
9	(a)	 addition: polymer is the only product / only one product; condensation: polymer and water formed / small molecule formed; 					
	(b)	 Any two from: ingestion can be fatal to animals / owtte; animals can be caught in plastics e.g. fishing line / owtte; combustion releases toxins / owtte; land-fill uses natural resources / owtte; allow: any appropriate example 					
	(c)	(c) CH ₂ =CHOCOCH ₃ note: double bond does not need to be shown					
	(d)	 (d) -OC(CH₂)₄CONH(CH₂)₆NH- amide linkage correct; correct repeat units; continuation bonds shown; 					