

Energetics of a reaction Question Paper 2

Level	IGCSE
Subject	Chemistry (0620/0971)
Exam Board	Cambridge International Examinations (CIE)
Торіс	Chemical energetics
Sub-Topic	Energetics of a reaction
Booklet	Question Paper 2

Time Allowed:	17 minutes
Score:	/14
Percentage:	/100

Grade Boundaries:

9	8	7	6	5	4	3	2	1
>85%	75%	68%	60%	53%	48%	40%	33%	<25%

1 Water can be used to produce hydrogen gas.

 $2H_2O \rightarrow 2H_2 + O_2$

Which row describes bond breaking in the reactant?

Α	endothermic	heat absorbed
в	endothermic	heat released
С	exothermic	heat absorbed
D	exothermic	heat released

- 2 Two chemical processes are described.
 - During the combustion of gasoline, energy is1.....
 - During the electrolysis of sulfuric acid, energy is2......

Which words complete gaps 1 and 2?

	1	2
Α	given out	given out
в	given out	taken in
С	taken in	given out
D	taken in	taken in

3 When dilute sulfuric acid reacts with aqueous sodium hydroxide, the temperature of the solution increases.

Which words describe this reaction?

- A endothermic and neutralisation
- **B** endothermic and redox
- **C** exothermic and neutralisation
- **D** exothermic and redox

4 Water is added to anhydrous copper(II) sulfate in a test-tube.

The mixture becomes hot.

Which type of reaction and energy level diagram apply to this reaction?

	type of reaction	energy level diagram
A	endothermic	energy reactants products
В	endothermic	energy reactants
с	exothermic	energy reactants products
D	exothermic	energy reactants

- **5** Which reaction is endothermic?
 - A neutralisation of an acid by an alkali
 - **B** reaction of hydrogen with oxygen
 - **C** reaction of sodium with water
 - **D** thermal decomposition of limestone

6 The compound hydrazine is used as a rocket fuel. It has the structural formula shown.

One of the reactions of hydrazine is shown. This reaction is exothermic.

$$N_2H_4 \rightarrow N_2 + 2H_2$$

The bond energies are shown in the table.

	bond energy in <mark>k</mark> J/mol
H–H	+436
N–H	+390
N–N	+160
N≡N	+945

What is the energy change for this reaction?

A –339 kJ/mol **B** –97 kJ/mol **C** +97 kJ/mol **D** +339 kJ/mol

7 Which statement describes an exothermic reaction?

- **A** The energy absorbed for bond breaking is greater than the energy released by bond formation.
- **B** The energy absorbed for bond breaking is less than the energy released by bond formation.
- **C** The energy released by bond breaking is greater than the energy absorbed for bond formation.
- **D** The energy released by bond breaking is less than the energy absorbed for bond formation.

8 The equation for the combustion of methane is shown.

$$CH_4 \ + \ 2O_2 \ \rightarrow \ CO_2 \ + \ 2H_2O$$

The energy change for the combustion of methane is -890 kJ/mol.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C–H	+410
O=O	+496
H–O	+460

What is the bond energy of the C=O bond?

A +49 kJ/mol B +841 kJ/mol C +1301 kJ/mol D +1335 kJ/mol

9 Chlorine reacts with ethane to produce chloroethane and hydrogen chloride.

The reaction is exothermic.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
C–Cl	+340
C–C	+350
C–H	+410
Cl-Cl	+240
H–C1	+430

What is the energy change for the reaction?

- A -1420 kJ/mol
- B –120 kJ/mol
- C +120 kJ/mol
- **D** +1420 kJ/mol

10 The equation for the reaction between hydrogen and chlorine is shown.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

The reaction is exothermic.

The bond energies are shown in the table.

bond	bond energy in kJ/mol
Cl–Cl	+240
H–Cl	+430
H–H	+436

What is the energy change for the reaction?

- A –1536 kJ/mol
- B –184 kJ/mol
- C +184 kJ/mol
- **D** +246 kJ/mol
- **11** Hydrogen and chlorine react to form hydrogen chloride11

The reaction is exothermic.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

The overall energy change for this reaction is -184 kJ/mol.

The table gives some of the bond energies involved.

bond	bond energy in kJ/mol
H–Cl	+430
H–H	+436

What is the energy of the C*l*–C*l* bond?

- A _240 kJ/mol
- B -190 kJ/mol
- **C** +190 kJ/mol
- **D** +240 kJ/mol

- Ammonium chloride is added to 100 cm³ of water. The temperature changes from 25 °C to 20 °C.
 Which type of reaction occurs?
 - A endothermic
 - **B** exothermic
 - **C** freezing
 - **D** neutralisation
- 13 Ammonia is made by reacting nitrogen with hydrogen in the presence of an iron catalyst.

The reaction is exothermic.

The equation for the reaction is shown.

 $N_2~+~3H_2~\rightarrow~2NH_3$

The bond energies are shown in the table.

bond	bond energy in kJ/mol
H–H	436
N–H	390
N≡N	945

What is the energy given out during this reaction?

A -4593 kJ/mol B -1083 kJ/mol C -959 kJ/mol D -87 kJ/mol

14 The energy level diagram for the reaction between P and Q to form R and S is shown.

Which row describes the energy changes involved and the type of reaction?

	energy changes involved	type of reaction
Α	more energy is given out when the bonds in the products are formed than is needed to break the bonds in the reactants	endothermic
В	more energy is given out when the bonds in the products are formed than is needed to break the bonds in the reactants	exothermic
С	more energy is needed to break the bonds in the reactants than is given out when the bonds in the products are formed	endothermic
D	more energy is needed to break the bonds in the reactants than is given out when the bonds in the products are formed	exothermic