CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pa	ige 2	Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2013	0439	31
1 (a)	uranium / plutonium / thorium			[1]
(b)	graphite	/ carbon		[1]
(c)		/ titanium / mercury / gold rbon / graphite		[1]
(d)	helium		[1]	
(e)	nitrogen		[1]	
(f)	argon ACCEPT: any ion 2 + 8 + 8 e.g. K⁺ etc.			[1]
(g)	tellurium ACCEP1	: correct symbol		[1] [Total: 7]
2 (a)	iron has iron has iron has NOTE: h		harder (1)	[3]
(b)	potassiui zinc copper	m hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1) no reaction (1)		[5]
				[Total: 8]

	ı ag		IGCSE – October/November 2013	0439	31
3	(a)	(i)	fractional distillation (liquid) air	[1] [1]	
	(ii)	cracking / heat in presence of catalyst of alkane / petroleum to give an alkene and hydrogen		[1] [1] [1]
			OR: electrolysis (1) named electrolyte (1) hydrogen at cathode (1)		
			OR: from methane (1) react water / steam (1) heat catalyst (1) only ACCEPT: water with methane or electrolysis		
	(b)	(i)	the pair with both graphs correct is C NOTE: mark (b)(ii) independent of (b)(i)		[1]
	(ii)	high pressure favours side with lower volume / fewer methis is RHS / product / ammonia %NH3 / yield increases as pressure increases	noles	[1] [1] [1]
			the forward reaction is exothermic exothermic reactions favoured by low temperatures %NH ₃ / yield decreases as temperature increases ACCEPT: reverse arguments		[1] [1] [1]
	(i	ii)	increases reaction rate ACCEPT: reduces activation energy OR: decreases the amount of energy particles need to		[1] [1]
			OR: economic rate at lower temperature so higher yield	u	[Total: 14]
4	(a)	(i)	(mass at t =0) – (mass at t = 5) NOTE: must have mass at t = 5 not final mass		[1]
	(ii)	fastest at origin slowing down between origin and flat section gradient = where gradrient = 0 three of above in approximately the correct positions	= 0	[2]
	(i	ii)	3 correct comments about gradient = [2]		
			2 correct comments about gradient = [1] 1 correct comment about gradient = [0]		[2]
			ort at origin and smaller gradient me final mass just approximate rather than exact		[1] [1]

Mark Scheme

Syllabus

Paper

Page	4	Mark Scheme	Syllabus	Paper	
		IGCSE – October/November 2013	0439	31	
(c) (i	c) (i) smaller surface area lower collision rate				
(ii		ecules have more energy de more frequently / more molecules have enough of	energy to react	[1] [1]	
cc m m	umber of oncentral aximum ass of one on aximum		[1] [1] [1] [1] [Total: 15]		
5 (a) (i	•	e same molecular formula / both are C ₅ H ₁₂ have different structural formulae / different structu	res	[1] [1]	
(ii	i) CH ₃ -	-CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]	
(b) (i		·(Br)-CH ₂ Br ·: C ₂ H ₄ Br ₂		[1]	
	dibro	omoethane E: numbers not required but if given must be 1, 2		[1]	
(iii		·CH ₂ -CH ₃ : C ₃ H ₈		[1]	
	prop			[1]	
(iii	buta	·CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ nol bers not required but if given must be correct and n	natch formula	[1] [1]	
(c) (i		-CH=CH-CH ₂ -CH ₃		[1]	
	CH ₃ -	·CH=CH-CH₃		[1]	
(ii	colo	/ purple urless : clear		[1] [1]	
		(CN)-CH ₂ -CH(CN)- epeat unit CH ₂ -CH(CN)		***	
С	orrect re OND: a ontinuat		[1] [1] [1]		
				[Total:16]	

	Page 5		Mark Scheme		Syllabus	Paper	
				IGCSE – October/November 2013		0439	31
6	(a)	(i) (attractive force between) positive ions and (negative) electrons opposite charges attract ONLY [1] electrostatic attraction ONLY [1]					[1] [1]
		(ii)	NOT	: atoms / p	ayers of lead ions / cations / positive ions protons / nuclei each other / the bonds are non-directiona		[1] [1]
	(b)	(i)	(i) anhydrous cobalt chloride becomes hydrated ACCEPT: hydrous				
		(ii)		on dioxide um hydrox	is acidic ide and calcium oxide are bases / alkalis		[1] [1]
		(iii)	wate		carbonate and sodium carbonate um bicarbonate		[2]
	(c)) number of moles of CO_2 formed = 2.112 / 44 = 0.048 number of moles of H_2O formed = 0.432 / 18 = 0.024				[1] [1]	
		x = 2 and $y = 1$ NOT : ecf from this line					
		formula is 2PbCO ₃ .Pb(OH) ₂ / Pb(OH) ₂ . 2PbCO ₃					[1]
							[Total:12]
7	(a)	(i) hydrogen (atoms) replaced by (atoms) of a different element e.g. chlorine NOT: substitute			[1]		
		(ii)	light	required			[1]
	(b)	end	exothermic reaction gives out energy endothermic reaction absorbs takes in energy			[1] [1]	
	(c)	bonds bro C-H Cl-Cl total energe bonds form C-Cl H-Cl total energe energy ch negative s			energy +412 +242		[4]
					+654 energy –338		[1]
				hange	-431 -769 -115 ates exothermic		[1] [1] [1]
							[Total: 8]