MARK SCHEME for the May/June 2014 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	2	Mark Scheme		Paper			
			IGCSE – May/June 2014	0439	31			
1	(a) <u>A</u> , <u> </u>							
	sar	 same number of protons and electrons/electrically neutral (1) (b) C (1) more electrons than protons/36e⁻ and 34p⁺/it has gained electrons (1) 						
	(b) C							
	mo							
	(c) B,∣	(c) B, F (1)						
	(d) the	ey have	e same number of protons (1)					
	diff	ferent	number of neutrons/neutron number (1)		[2]			
					[Total: 7]			
2	(a) (i)	filtrat	tion (1)					
		chlor	ination (1)		[2]			
	(ii)		two from: manufacture of ethanol		[2]			
		ontact process ber process						
	(iii)	-	two from:		[2]			
		•	cooking washing or laundry					
			drinking toilets					
			watering plants (domestic) heating					
	(b) boi	iling or	turning to steam (1)					
	the	en con	densing/condensation (1)		[2]			
					[Total: 7]			
3	(a) (i)		icles) spread to fill total available volume/move fro w concentration/moves down a concentration gradi	-	[1]			
	(ii)	mas	s or M _r (1)		[1]			
	(b) (i)		m atoms/molecules are lighter than molecules in a	ir or N_2 and O_2				
	or helium is less dense than air or N_2 and O_2 . or helium diffuses (through the porous barrier) faster than air or N_2 and O_2 . (1)				[1]			

Page	3			'k Schen				Syllabus	;	Paper	
			GCSE –	May/Jur	ne 2014			0439		31	
(ii)	faste	faster rate of diffusion/molecules move faster (at high temperatures). (1)						. (1)		[1]	
(c) (i)	CH ₄	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (1)								[1]	
(ii)	or w	would get a mixture of helium and carbon dioxide or would get a mixture of gases or waste of methane/natural gas/fossil fuel (1)								[1]	
(iii)	fract	<u>ional</u> distillatio	an (1)	-		. ,					[1]
(11)	naci	<u>ionai</u> distillatio									
										[Tota	1: 7]
4 (a) (i))										
- (-) (-)	Grou num		I	II	111	IV	V	VI	VII		
	sym	bol	Na	Mg	Al	Si	Р	S	Cl		
	vale	ber of ncy trons	1	2	3	4	5	6	7		
	vale	ncy	1	2	3	4	3	2	1		
			1	I	1	1		(1) for ea	ich line	[2]
(ii)	num	ber of valency	y electror	ns = the g	group n	umber (1)				[1]
(iii)		la to A <i>l</i> valency is the	same as	s the num	ber of v	valency (outer) ele	ectrons ((1)		
	(bec	ause) this is t	he numb	er of ele	ctrons I	ost (for f	ull energ	y level)([1]		
	the v	o to C <i>l</i> valency is 8 – alency + valer				er) electr	ons]				
		ause) this is gy level) (1)	number	of elect	trons n	eeded(or to be	gained)	(for fu	II	
(b) (i)		ume change is c to amphoter			ss clea	rly stated	1:				[2]
(ii)		c (metal) chlor alent (non-met				(1)					[2]
		[Total: 11]						11]			

	Pa	ge 4		Syllabus	Paper
			IGCSE – May/June 2014	0439	31
5	(a)	M1:	: (zinc sulfide) heated/roasted/burnt in air (1)		
		M2:	zinc oxide formed (1)		
		M3:	zinc oxide reduced (1)		
		M4:	: (by adding) coke or carbon (1)		
		M5:	Balanced equation (any one of) (1)		[5]
		2Zr ZnC	$\begin{array}{l} nS + 3O_2 \rightarrow 2ZnO + 2SO_2 \\ nO + C \rightarrow 2Zn + CO_2 \\ O + C \rightarrow Zn + CO \\ O + CO \rightarrow Zn + CO_2 \end{array}$		
	(b)	Any	/ two from:		[2]
		• • •	(making) brass or alloys (1) galvanising (1) sacrificial protection (1) batteries (1)		
					[Total: 7]
6	(a)	(i)	rate at t_2 less than at t_1 or the rate decreases (1)		
			rate at t_3 zero/reaction stopped (1)		[2]
		(ii)	rate at t_2 less than at t_1 because concentration of hydrog at t_2 or concentration of hydrogen peroxide is decreasing	•	SS
			(rate at t_3 zero/reaction stopped because) hydrogen perox	tide is used up(1) [2]
	(b)	(i)	steeper and must come from the origin (1) final volumes the same (1)		[2]
		(ii)	Any two from: steeper curve because of a faster rate faster rate because of increased surface area same amount/volume/mass/no of mol of hydrogen perox ecf for M1 for a shallower curve because of slower rate.	ide	[2]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0439	31

(c) filter (and rinse/wash) (1)

dry manganese (IV) oxide (1)

weigh/measure mass manganese(IV) oxide after reaction (1)

the mass should be 0.1 g or unchanged. (1)

(d) number of moles of O_2 formed = 0.096/24 = 0.004 (1) number of moles of H_2O_2 in 40 cm³ of solution = 0.004 × 2 = 0.008 (1)

concentration of the hydrogen peroxide in mol/dm³ = 0.008/0.04 = 0.2 (1) [3]

[Total:15]

[3]

[1]

[4]

7	(a)	(i)
---	-----	-----

aqueous solution	lead Pb	magnesium Mg	zinc Zn	silver Ag
lead (II) nitrate				×
magnesium nitrate	Х*		×	×
zinc nitrate	×	1		×
silver(I) nitrate	1	1	1	

each horizontal line correct (1)

(ii) Zn (1)

An arrow from Zn to Zn^{2+} (1) [2]

(iii)
$$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$$
 (1) [1]

- (b) (i) correct direction from zinc to lead (1)
 - (ii) metals react by losing electrons (1)

the more reactive metal/zinc will lose electrons more readily (making the electrode negatively charged). (1) [2]

Page	e 6		yllabus	Paper				
		IGCSE – May/June 2014	0439	31				
(ii	ii)	manganese and zinc are more reactive than lead (and/or copper) (1)						
		lead is more reactive than copper (1)	[2]					
(iv		the polarity of a Mn/Zn (cell) or the voltages of Zn/Pb and Mn/Pb (cells) (1)		[4]				
				[1]				
				[Total: 12]				
8 (a) ((i)	CH_3 – CH = CH – CH_3 (1)		[1]				
(i	ii)	one correct amide linkage between two rectangles (1)						
		correct sequencing of a second amide link and monomers (1)						
		two correct amide links and rest of structure correct (inc monomers if seen) and correct continuation bonds (1)	uding additior	nal [3]				
		-C-D-C-N-3 mar	ks					
(ii	ii)	protein or polypeptide or named protein (1)		[1]				
(iv	v)	addition: only the polymer or one product is formed (1)						
		condensation: the polymer and a small molecule/water/HC	is formed (1)	[2]				
(b) ((i)	does not break down or rot or decompose (1)						
		by microbes or fungi or bacteria or by living organisms (1)		[2]				
(i	•	Any three from: visual pollution (1)		[3]				
		(shortage of) landfill sites (1)						
		danger to wildlife/animals (including at sea) (1)						
		toxic gases when burnt or greenhouse gases produced when	n burned (1)					
	-	two from: stant to corrosion/unreactive to water/more durable (1)		[2]				
li	lighter/less dense (1)							
e	easier to manufacture/can be moulded (1)							
ç	good	d insulator/keeps the water cold (1)		[Total: 14]				