MARK SCHEME for the October/November 2014 series

0439 CHEMISTRY (US)

0439/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0439	31
1	(a)	Ma 1	tch the following pH values to the solutions given below.		
			e solutions all have the same concentration.		
			ution pH Jeous ammonia, weak base 10		
			te hydrochloric acid, a strong acid		
		•	leous sodium hydroxide, a strong base 13		
			ueous sodium chloride, a salt7te ethanoic acid, a weak acid3		[5]
	(b)	OR	drochloric acid strong acid or ethanoic acid weak acid : hydrochloric acid completely ionised or ethanoic acid		[1]
			tially ionised Irochloric acid greater concentration of/more H⁺ ions (than ethanoic	acid)	[1]
	(c)	Rat	e of reaction with Ca, Mg, Zn, Fe		[1]
		Stro	ong (hydrochloric) acid bubbles faster or more bubbles or dissolves	s faster	[1]
			: rate of reaction with (metal) carbonate		[1]
			ong (hydrochloric) acid faster or more bubbles or dissolves faster (o bonate insoluble)	oniy it	[1]
			: electrical conductivity ong (hydrochloric) acid better conductor		[1] [1]
					[Total: 9]
2	(a)	sof	t because weak forces between layers/sheets/rows		[1]
		lay	ers can slip/slide		[1]
		goo	od conductor because electrons can move/mobile		[1]
	(b)	it is soft: pencils or lubricant or polish good conductor: electrodes or brushes (in electric motors)			[1] [1]
		300			[.]
	(c)	(i)	every silicon atom is bonded/attached to 4 oxygen atoms or every bonded/attached to two silicon atoms	oxygen	[1]
		(ii)	Any two from: high melting point/boiling point		
			hard colourless crystals/shiny		
			poor/non-conductor of electricity/insulator insoluble in water		[2]
					[Total: 8]

Page 3		3	Mark Scheme		Paper
			Cambridge IGCSE – October/November 2014	0439	31
3		blea foo fum	/ two from: ach/making wood pulp/making paper d/fruit juice/wine preservative nigant/sterilising/insecticide ating/roasting/burning (zinc sulfides)		[2]
		in a	ir/oxygen COND on M1		[1]
	(c)	(i)	V ₂ O ₅		[1]
		(ii)	position of equilibrium shifts right/yield increases to save energy		[1] [1]
		(iii)	faster reaction/rate		[1]
			more collisions per second/higher collision frequency		[1]
			fewer moles/molecules (of gas) on right		[1]
			(so) position of equilibrium shifts right/yield increases		[1]
	(d)	(the	e reaction is) too violent/too exothermic or produces mist/fumes (of ac	rmic or produces mist/fumes (of acid)	
					[Total: 12]
4	(a)	(i)	insufficient/limited oxygen or 2C + $O_2 \rightarrow 2CO$		[1]
			coke/carbon reacts with carbon dioxide or C + $CO_2 \rightarrow 2CO$		[1]
		(ii)	Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO ₂ species (1) balancing (1)		[2]
	(b)	(i)	carbon dioxide		[1]
		(ii)	$CaO + SiO_2 \rightarrow CaSiO_3$ [1] each side correct		[2]
		(iii)	(molten) iron higher density (than slag)		[2]
		(iv)	No oxygen in contact with iron or layer of slag prevents hot iron reac oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to re iron)	-	[1]
	(c)	(i)	air/oxygen and water (need both)		[1]

Ρ	age 4	4	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2014	0439	31
	 (ii) aluminium oxide layer is impervious or non-porous or passive or u or will not allow water/air to pass through it (rust allows passage of air or it flakes off) 				[1]
	(d)	(i)	zinc more reactive (than iron/steel) loses electrons electrons move (from zinc) to iron Zinc reacts (with air and water) or zinc corrodes or zinc is oxidised anodic or zinc forms positive ions or zinc forms Zn ²⁺ or iron and ste react with air/water or iron and steel are not oxidised or iron and ste form ions or iron and steel do not lose electrons or iron and steel a	eel don't eel do not	[1] [1] [1]
			cathodic		[1]
		(ii)	R to L in wire		[1]
		(iii)	$2H^+ + 2e^- \rightarrow H_2$ species (1) balancing (1)		
					[Total: 19]
5	(a)		ogen and oxygen react nigh temperatures (in engine)		[1] [1]
	(b)	M1	carbon monoxide (converted to) carbon dioxide or 2CO + $O_2 \rightarrow 2$		[1]
			(by) oxides of nitrogen (which are reduced to) nitrogen $2NO \rightarrow N_2 + O_2 \text{ or } 2NO_2 \rightarrow N_2 + 2O_2$		[1]
		М3	hydrocarbons (burn) making water		[1]
			products: any two from: bon dioxide, water, nitrogen		[1]
	(c)	(c) lead compounds are toxic or brain damage or reduce IQ or nausea or kidney failure or anaemia		idney	[1]
					[Total: 7]
6	(a)	(i)	butanoic acid methanol		[1] [1]
		(ii)	number of moles of ethanoic acid = 0.1 number of moles of ethanol = 0.12(0) the limiting reagent is ethanoic acid number of moles of ethyl ethanoate formed = 0.1 maximum yield of ethyl ethanoate is 8.8 g		[1] [1] [1] [1] [1]

Pa	age 5	Mark Scheme	Syllabus	Paper
		Cambridge IGCSE – October/November 2014	0439	31
	tv	orrect ester linkage [1] vo ester linkages (COND on M1) ontinuation (COND on M2)		[1] [1]
	(c) (i	add bromine water/bromine turns colourless remains brown/orange/reddish brown/yellow		[1] [1] [1]
		ALLOW: potassium manganate(VII) (acidic or alkaline) correct colour colourless/green or brown ppt stays pink/purple		[1] [1] [1]
	(ii			[1]
		COND alkyl group is C _n H _{2n+1} which is NOT C ₁₇ H ₃₃ or C ₁₇ H ₃₅ is C _n H _{2n+1} or less hydrogen		[1]
	(iii) soap or (sodium) salt (of a carboxylic acid) or carboxylate		[1]
	(
		alcohol		[1]
				[Total: 17]
7	(a) (i	6Li + N ₂ = 2Li ₃ N species (1) balancing (1)		
	(ii) N ^{3–} ion drawn correctly		[1]
		Charges correct (minimum 1 \times Li ion and 1 nitride ion)		[1]
	(b) (i) $3 \times$ shared pairs between N and $3 \times$ F		[1]
		only 2 non-bonding electrons on N, 6 non-bonding electrons on eac (COND on first point)	ch F	[1]
	(ii) Strong attractive forces/strong ionic bonds in lithium nitride		[1]
		weak (attractive) forces between molecules in NF_3		[1]
				[Total: 8]