

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMPUTER SCIENCE 0478/22
Paper 2 May/June 2017

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 $\ensuremath{\mathbb{R}}$ IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Question	Answer			
1(a)(i)	One variable name MUST relate to the cost of the outing in Task 1 - Variable name (1) - Data type to match variable (1) - Description of the use of the given variable (1) Many correct answers, they must be meaningful. This is an example only. - NoSeniorCitizens (1), integer (1), number of senior citizens that want to go on the outing (1)	3		
1(a)(ii)	Two constants required, for each constant - Name (1) - Value (1) - Use (1) Many correct answers, they must be meaningful. These are examples only. - MinNoSeniorCitizens (1), 10 (1), minimum number of senior citizens that can go on the outing (1) - MaxNoSeniorCitizens (1), 36 (1), maximum number of senior citizens that can go on the outing (1) Max 6 marks	6		
1(b)	 calculate cost of carers // if more than 24 senior citizens on the trip cost is 60 otherwise cost is 40 add to the cost of the outing 	2		

© UCLES 2017 Page 2 of 6

Question	Answer		
1(c)	Any five from: - loop for number of senior citizens on the trip - input with prompts name and amount paid - store name and amount paid in appropriate place in arrays - total the amount paid - check if spare places are available - if spare place is required remove a spare place//fill spare places - add name(s) to list in appropriate place(s) - store names of two carers - If number of senior citizens > 24 store name of third carer Max 5 marks		
	Example TotalPaid ← 0 FOR Counter ← 1 TO NoSenCit PRINT "Please Enter Name" INPUT SenCitName[Counter] PRINT "Please Enter amount paid" INPUT SenCitAmount[Counter] TotalPaid ← TotalPaid + Amount NEXT Counter Extras ← TRUE WHILE NoSenCit < 36 and Extras PRINT "Do you want to add another person? Y/N" INPUT Answer IF Answer = "Y" THEN NoSenCit ← NoSenCit + 1 PRINT "Please Enter Name" INPUT SenCitName[NoSenCit] ELSE Extras ← FALSE ENDIF ENDWHILE PRINT "Please Enter Name of First Carer" INPUT Carer1 PRINT "Please Enter Name of Second Carer" INPUT Carer2 IF NoSenCit > 24 THEN PRINT "Please Enter Name of Third Carer" INPUT Carer3 ENDIF		
1(d)	Explanation (any programming statements must be fully explained) - check total costagainst total amount paid - if total cost < total amount paid display/show profit - if total cost = total amount paid display/show break even	4	

© UCLES 2017 Page 3 of 6

Question	Answer			
2(a)	award full marks for any working solution - Input three numbers (1) - Attempt to select largest number (1) - Working method (1) - print out largest number (1)			
	Sample algorithm INPUT Num1, Num2, Num3 IF (Num1 > Num2) AND (Num1 > Num3) THEN PRINT Num1 ENDIF IF (Num2 > Num1) AND (Num2 > Num3) THEN PRINT Num2 ENDIF IF (Num3 > Num1) AND (Num3 > Num2) THEN PRINT Num3 ENDIF Or INPUT Num1 Big Num1 INPUT Num2, Num3 IF Num2 > Big THEN Big Num2 ENDIF IF Num3 > Big THEN Big Num3 ENDIF PRINT Big			
2(b)	1 mark for each data set and 1 mark for the matching reason. There are many possible correct answers, these are examples only.			
	Test data set 1: 30, 29, 28 Reason: first number is the largest Test data set 2: x, y, z Reason: abnormal data, should be rejected			
	Max 4 marks			

© UCLES 2017 Page 4 of 6

Question	Answer			Marks	
3	Weight	Reject	Total Weight	OUTPUT	5
		0	0		
	13		13		
	17		30		
	26	1			
	25		55		
	5		60		
	10		70		
	15		85		
	35	2			
	20		105		
			85	Weight of items 85 Number of items rejected 2	
	(1mark)	(1 mark)	(1 mark to 1st 85) (1 mark 105, 85)	(1 mark)	

Question	Answer				
4(a)	Error - Count ← 0 Correction - Count ← 1 or				
	Error - UNTIL Count > 100				
	Correction - UNTIL Count >= 100 or UNTIL Count = 100				
	or UNTIL Count > 99				
4(b)	use of FOR with correct start and end values use of NEXT removal of increment for Count				
	Sample algorithm Sum ← 0 FOR Count ← 1 TO 100 INPUT Number Sum ← Sum + Number NEXT // NEXT Count PRINT Sum				
5(a)	for each field name (1), data type and sample (1)				
	The following are examples there are many different correct answers. - EarTag (1), text, EAR1011 (1) - DOB (1), date, 4/3/2017 (1) - Gender (1), text, M (1) - Weight (1), number, 5.9 (1)				

© UCLES 2017 Page 5 of 6

Question	Answer				Marks	
5(b)	EarTag					1
5(c)	Field:	EarTag	Gender	Weight		3
	Table:	SHEEP	SHEEP	SHEEP		
	Sort:					
	Show:	V				
	Criteria:		='M'	> 10		
	or:					
		(1 mark)	(1 mark)	(1 mark)		

© UCLES 2017 Page 6 of 6