WANT DAY

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0420 COMPUTER STUDIES

0420/13

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		-		
Page 2	Mark Scheme: Teachers' version	Syllabus	.0	Y
	IGCSE – October/November 2011	0420	100	

1 (a) Any two from:

- share resources (hardware and software)
- easier communications are possible
- possible to work from any work station and access files/data
- central data source
- easier to control/monitor what users are doing
- easier to 'globally' protect against unauthorised access

(b) Any **one** advantage and any **one** disadvantage from:

Advantages

- no trailing wires (therefore safer, less expensive since no cables)
- allows users to work anywhere (portability)
- can set up network in places where cable runs are not possible (e.g. outside, historic buildings etc.)

Disadvantages

- limited range
- certain items (like filing cabinets) can block the signals
- possible to 'tap' into WiFi if it isn't secure
- often slower data transfer rate than a wired system
- needs additional hardware
- number of access points need to match computers

2 1 mark per point (max of 2 marks per application)

Application	Output device	Reason for choice of device
A disabled person using a word processor	speakersBraille printers	allows blind people to hear outputfrom word processorsblind people can read printed output
Using CAD to design a new engine	plotterlarge monitor3D printer	 accurate print out of large drawings allows easy editing of drawings produce working prototypes in resin
Monitoring a house for burglars	– buzzer – light – alarm	to warn of intruder's presence in the building

[2]

[2]

	Page 3	Mark Scheme: Teachers' version	Syllabus	
		IGCSE – October/November 2011	0420	
3	(a) 1 mark fo	or <u>each</u> description + 1 mark for <u>each</u> example of h/	ware	
		cription communicates by typing in commands (in responseral commands are entered to carry out a task (such		e.com
	CLI h/wa	<u>ire</u>		

CLI description

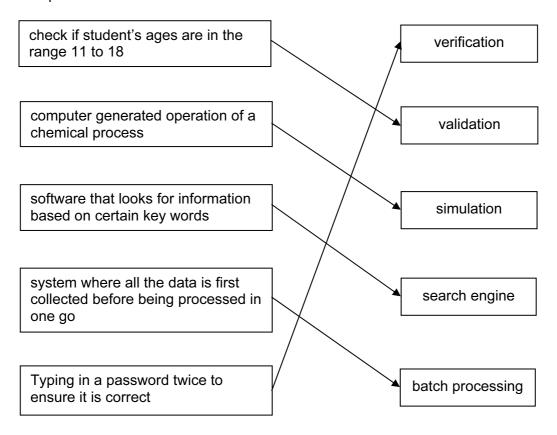
- user communicates by typing in commands (in response to a prompt)
- several commands are entered to carry out a task (such as loading software)

CLI h/ware

- keyboard
- keypad

GUI description

- user interacts with a computer using pictures and symbols (icons)/drop-down menu
- tasks are initiated by selecting the icon
- usually part of a windows/wimp environment


GUI h/ware

- pointing device (e.g. mouse)
- [4] touch screen
- (b) (i) saving/collecting data with no actual need for human interaction
 - (ii) 1 mark for named device + 1 mark for *matching* application: if device is wrong then no application mark

<u>De</u>	<u>vice</u>	<u>Application</u>
_	barcode reader	used in automatic stock control
-	document scanner	transferring printed documents into an electronic form for storage on computer
_	mag stripe reader	electronic funds transfer/entry through 'locks'
_	microphone	part of voice recognition - automatically picking up
		sounds in burglar detection
_	OCR/OMR/MICR	transferring documents to computer, reading multiple
		choice answers in a survey, reading cheques
_	RFID	tracking animals/people/items/vehicles
_	retina scan/finger prints	security systems
_	<u>video</u> camera	security surveillance
_	correct sensor	control applications
_	data logger	used to monitor a parameter in an experiment [3]

F	Page 4	Mark Scheme: Teachers' version	1	Syllabus	· 0
		IGCSE – October/November 2011		0420	78
. 1	mark per co	orrect match	_		Cambrid
	check if range 11	student's ages are in the	<u> </u>	verification	36. COM

1 mark per correct match

5 (a) user documentation:

helps users learn how to use/operate the software

technical documentation

- designed to help programmers to make improvements to the system
- helps programmers to repair/maintain the system

[2]

[5]

Page 5	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – October/November 2011	0420	

(b) 1 mark for 3 correct answers, 2 marks for 4 to 6 correct answers and 3 marks if all correct.

ltem	User documentation only	Technical documentation only	Both user <u>and</u> technical documentation
how to save a file	$\sqrt{}$		
program listing/coding		V	
hardware and software requirements			V
file structures		V	
list of variables		V	
how to load the software	√		
meaning of errors/error messages			V

6 (a) – program/software that allows a user to display web pages, web sites, etc. NOT access the Internet [1]

- (b) (i) web<u>page</u> (part of)
 - (ii) radio button
 - (iii) hyperlink NOT link [3]
- (c) reference to <u>cookies</u> or description of cookie [1]
- (d) Any two from:
 - phishing
 - pharming
 - viruses
 - key logging > or malware

 [2]

[3]

Page 6 Mark Scheme: Teachers' version Syllabus IGCSE – October/November 2011 0420

There size average OUTPUT

7

engine	count	number	size	average	ОИТРИТ
0	0	0	1.8		
1.8	1	1	2.0		
3.8	2	2	1.0		
4.8		3	1.3		
6.1		4	1.0		
7.1	3	5	2.5		
9.6		6	2.0		
11.6	4	7	1.3		
12.9	5	8	1.8		
14.7		9	1.3		
16.0		10	(-1)		
				1.6	
			_		1.6, 5
(1mk)	(1 mk)	(1 mk)	(1 mk)	(1 mk)	(1 mk)

8 (a) Any three from:

- unemployment
- need to re-train
- cleaner/less noisy environment
- safer environment
- possible de-skilling
- less heavy lifting
- reskilling with description
- redeployment (could lead to new employment e.g. maintaining robots)

(b) Any **two** from:

- less lighting/heating/air con costs since few people now in factory
- no need to pay wages/salary
- greater productivity (therefore lower unit cost)
- can work non-stop/24-7 (no breaks/holiday)

(c) Any two from:

- more consistent product
- can work non-stop (no breaks, holidays, etc.)/24-7
- don't go on strike
- can be used in a dangerous environment
- greater productivity

[2]

[6]

[3]

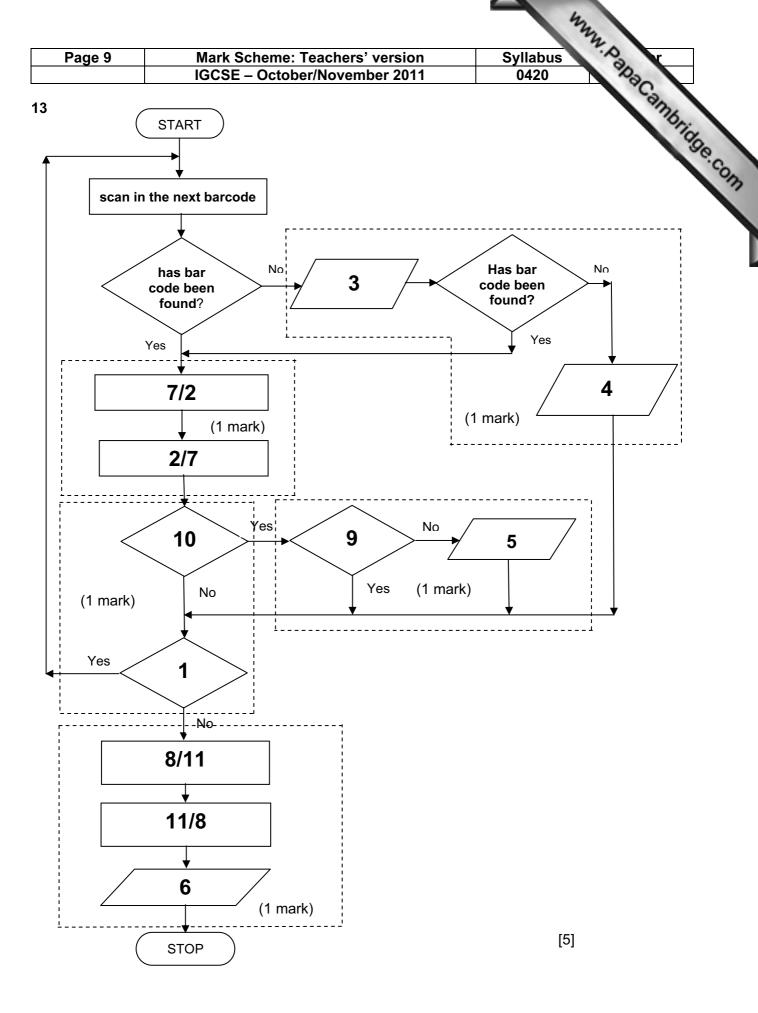
[2]

Page 7	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – October/November 2011	0420	

- 9 (a) = D2/C2
 - (b) = <u>AVERAGE</u>(E2:E6) OR = SUM(E2:E6)/5 OR = (E2 + E3 + E4 + E5 + E6)/5

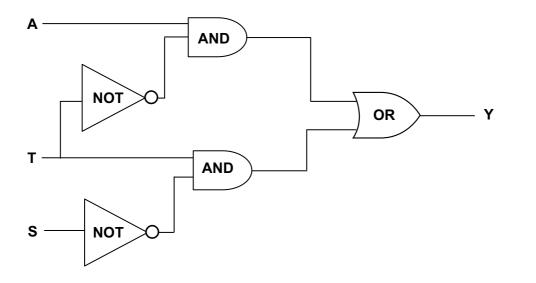
[1] COM

(c) (i) 1 mark for formula in F2 and 1 mark for all other formulas correct


	F			
1	Flight costs (\$)			
2	= B2 * C2/10			
3	= B3 * C3/10			
4	= B4 * C4/10			
5	= B5 * C5/10			
6	= B6 * C6/10			

[2]

- (ii) Loss [1]
- (iii) = IF (F5 > D5, "Loss", "Profit") [1]
- **10** (a) Any **two** from:
 - (i) monitoring
 - decide if the temperature/pressure are out of range
 - give a warning if out of range/doesn't change the process parameters [1]
 - (ii) control
 - send signal to open/close valve, switch on/off a heater etc.
 - output affects the input [1]
 - (b) Any three from:
 - data from temperature/pressure sensor...
 - ...changed into digital by ADC
 - data is sent to computer
 - data/input is compared to values in memory
 - if temperature too low, signal sent to heater...
 - if pressure too low, signal sent to valve...
 - and heater turned on/valve opened
 - use of DAC
 - use of actuators
 - monitoring/control system continues to loop indefinitely


[3]

	Pa	ge 8	Mar	k Scheme: Te	achers' version	Syllabus	2
					November 2011	0420	Day
	(c)	1 mark fo	or <u>each</u> sens	or + 1 mark fo	r <u>each related</u> applicatior	1	CONTAIN.
		<u>sensor</u> – light			application greenhouse environme open/close automatic d	nt oors	ana Cambridge
		sourinfra			burglar alarm listening for sounds in p	pipes etc.	
		– mois			burglar alarm detecting people (e.g. e greenhouse environme		
		– gas			check if clothes dry in a detection of gas leaks	drier	
		– pН	L		soil acidity in greenhous		
		smomoti		ccelerometer	in buildings for fire dete vibrations in machinery		
			imity		parking cars		
							[4]
11	(a)		4 9 1 mk				[2]
	(b)	0 1 1 0 0 1		1 st digit 2 nd digit 3 rd digit 4 th digit			[4]
	(c)	– if the	oprocessor of values are	the same	ent time with stored time		
		– send	ds signal to s	ound alarm			[2]
12	(a)	7					[1]
	(b)	CH, IN,	ΓI, SA				[2]
	(c)				(Coastline = "Yes")		
	OR						
		(Coastlin	ne = "Yes") mark>	AND (Area ((millions sq km) < 3) mark>		[2]
	(d)	CH, IN, E	BR, PO, SA,	RO, ZA, BO, 1	гі		[2]

Page 10	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2011	0420
4 (a) 1 mark f	or each logic gate:	Cambria
Α	AND	ate c
	NOT	OH)

14 (a) 1 mark for each logic gate:

(b)

Α	Т	S	Υ	
0	0	0	0	1 4 male
0	0	1	0	1 mk
0	1	0	1	1 1 mk
Ö	1	1	0]
1	0	0	1	1 1 mk
1	0	1	1	1 mk
1	1	0	1	1 1 mk
1	1	1	0	J '''''

[4]

[5]

15 (i) interrupt

(ii) handshaking

[3] (iii) buffer

Page 11	Mark Scheme: Teachers' version	Syllabus	.0
	IGCSE – October/November 2011	0420	123

16	<u>Marking</u>	points
----	----------------	--------

```
1 mark
initialise variables
correct loop control
                                                               1 mark
input (in correct place)
                                                               1 mark
correct check on type of weather (if, case, etc.)
                                                               1 mark
adding number of days of each type of weather
                                                               1 mark
check for the highest temperature
                                                               1 mark
check for the lowest temperature
                                                               1 mark
output (all items in the correct place)
                                                               1 mark
```

```
Sample algorithm
c = 0: r = 0: s = 0: f = 0
high = 0 (or a negative number)
low = 1000
                                                              (1 mark)
for x = 1 to 365
                                                              (1 mark)
    input weather, temp
                                                              (1 mark)
    if weather = "CLOUDY" then c = c + 1
         else if weather = "RAINING" then r = r + 1
                                                              (2 marks)
             else if weather = "SUNNY" then s = s + 1
                 else if weather = "FOGGY" then f = f + 1
    if temp > high then high = temp
                                                              (1 mark)
    if temp < low then low = temp
                                                              (1 mark)
                                                              (1 mark)
print c, r, s, f, high, low
```

[6]