

www.papacambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

COMPUTER STUDIES

Paper 3 Alternative to Coursework SPECIMEN MARK SCHEME

For Examination from 2011

1 hour 30 minutes

0420/03

MAXIMUM MARK: 60

This document consists of 6 printed pages.

1 (a) Any four points from:

Gantt charts which show all stages/tasks to be done Gantt charts which show the critical path(s) Gantt charts which show key project milestones Gantt charts also show:

- number of days to do a task
- progress of tasks as % complete
- progress versus expected time to do work
- how tasks are all linked together

Use of PERT charts

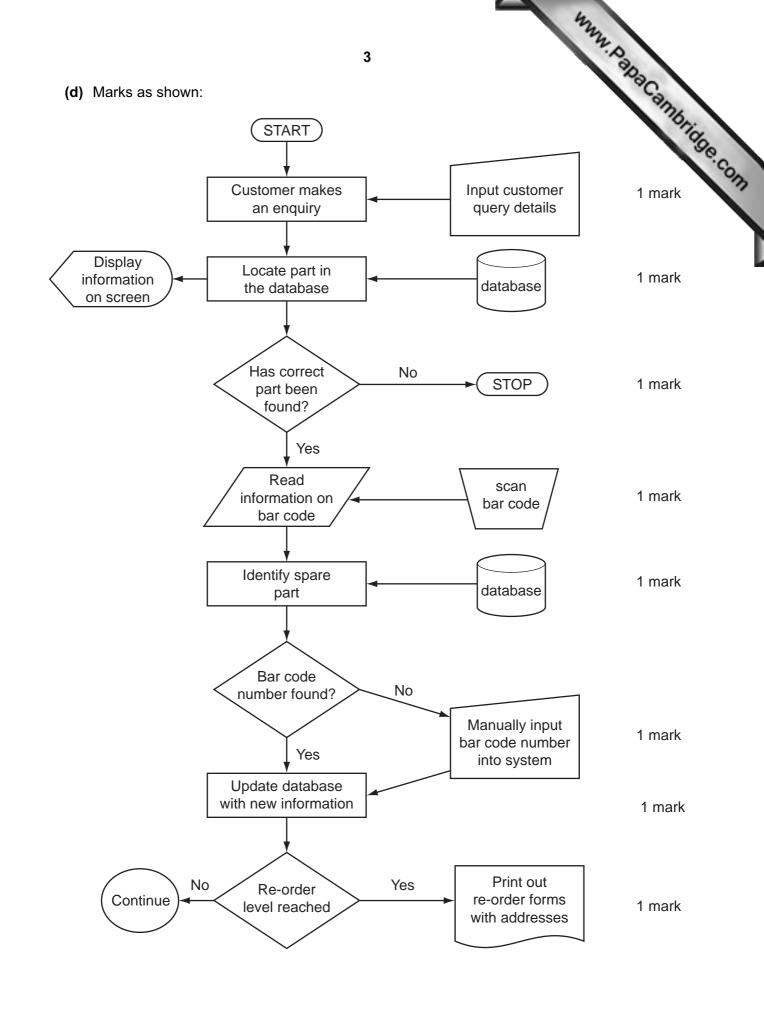
Use of software (such as Microsoft Project) which allows progress to be tracked

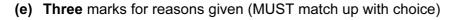
2

(b) One mark per method, one mark per explanation

questionnaires	 produce series of questions to give to garage workers each question guides user through his particular area
interviewing	 no need for analyst to be present more efficient ask employees a number of face to face questions allows questions to be tailored to the individual
	- very time consuming since need an interviewer
look at docs	- gather information from existing paperwork
	 allows procedures to be studied first hand
	 allows close scrutiny of all paperwork/files
observation	- watch workers doing their day to day tasks
	- gives first hand knowledge of how system works
	 needs close supervision so that nothing is missed

(c) One mark per device, one mark per reason


(both parts needed i.e. device + reason for choice) hi resolution screen – spare part diagrams are very detailed large hard disk/DVD – many files and diagrams require large storage (laser) printer – print out invoices and re-orders pointing devices/touch screen – many menu options to choose parts bar code reader/scanner – to identify spare part when sold/arrives


[4]

[6]

www.papacambridge.com

[4]

existing software chosen for the following reasons:

- already fully tested and de-bugged
- usually less expensive to buy
- large back-up technical help desk
- usually compatible with other existing software

bespoke software chosen for the following reasons:

- can be tailored to the specific task
- in contact with the actual programmers if there is a problem
- software can develop as it is used
- doesn't contain unwanted features
- (f) (i) One mark per point

consider all test data to fully test the system:

	normal test data	- known outcomes
	(max of 2 mks)	 data expected from normal use
	· ,	- should produce no errors
	extreme test data	- data at extreme ends of the data set
	(max of 2 mks)	 shouldn't produce any errors
	· · · · · ·	- checks validation routines permit data
	abnormal test data	- data outside normal range
	(max of 2 mks)	- should produce error messages
	· ,	- checks if validation routines work
		- check to ensure program doesn't crash
inpu	It data and print out	
•		

predicted output checked against actual output (known results)

(ii) One mark per example, one mark per reason

```
person's name – e.g. John Smith

this checks that system can accept appropriate inputs

data – e.g. 31/12/2010 and 01/01/2011

this checks the extreme ends of possible input dates

date of birth – 05/10/1852

this checks if input data is reasonable in this application

price of an item – e.g. - $25

checks that negative prices are rejected
```

[6]

[4]

www.papacambridge.com

[3]

- (g) One mark per point
 - how to load the software
 - how to run the software
 - how to save/delete/amend/update (etc.) files
 - typical screen layouts
 - how to troubleshoot/what to do if errors occur
 - hardware requirements for the system
 - software requirements to run the system
 - typical printouts expected
 - how to carry out tasks such as printing etc.
 - how to do bar code scanning
- (h) One mark for chosen method, two marks for reasons given

Direct changeover

- new system replaces old system overnight; no transition time
- no need to run 2 systems side by side ... less expensive
- immediate benefits from new system
- less disruptive
- more likely to work since it will have been fully tested first

Parallel implementation

- operate both systems together side by side
- duplication of work ... more time consuming/more expensive
- good for training since both systems can be compared
- if new system fails have old manual system as a back up

Pilot implementation

- adopt new system at one of the garages
- can easily re-introduce old system if problems occur
- makes sure system fully works before adopting elsewhere

Phased implementation

- part of system (e.g. database) introduced initially for trials
- if it is OK, gradually introduce other parts of the new system
- if a problem occurs, can stop using it any stage
- allows training and staff to gain confidence in its operation

[6]

[4]

- (i) **One** mark for each point
 - consider if objectives of new system have been met
 - discuss with staff whether or not new system works
 - discuss possible improvements with the staff
 - look at print outs etc. to see if system produced the correct outcomes
 - investigate whether or not system was easy to use

5

- (j) One mark per advantage
 - much faster response to customer requests
 - less likelihood for information to be lost
 - less chance of running out of stock (automatic re-ordering done)
 - fewer staff are now required
 - possible to adopt a "just in time scenario"
 - less space needed for large filing cabinets etc.
- (k) One mark for each item (up to a maximum of 5 marks)

shopping basket name of the company space to write customer details space to write credit card details search facility box help facility email address of customer/password for "my account" tracking of your order facility recognise returning customers drop down boxes to choose spare parts appropriate spacing provided on the form

(+ 1 mark for indicating that this is clearly a computer screen)

[6]

[3]