WWW. Palls

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0607

	rm sition	n 12 13 14		14	15				ambril		
	honacci			4	233	233 377		610		1	
			•		1				C1	1ft C1 for showing working	ft for 610 – 233 + 'their 377'
(a)											
	Term posit				6	9	12		1 fe	1 for both in row 1	
	Fibo:	nacci per	2		8	34	14	1	2	1 for both in row 2	
(b)	(i)										
		Term position	ı	4	8	12	1	6		1	
		Fibonao number		3	21	144	9	87		2ft for all 3 in row 2 -1 eeoo	ft from Q1 for 987 – 'their 377' + 'their
	3 E	3 is the 4 th term Every 4 th term		5	1 6600	610'					
	(ii)										
		Term position	n	5	10	15	2	0		2 for all 3 in row 1 -1eeoo	
		Fibonao number		5	55	610	67	65		1ft	ft from Q1 for 'their 610'
	5 is the 5 th term Every 5 th term in the is a multiple of 5							5	1 1 for both entries		
	1	•									

		nn	
Page 3	Mark Scheme: Teachers' version	Syllabus Y	
	IGCSE – October/November 2010	0607	

			IC	JUSE .	– OCI	ober/r	dmevor	er 2010	,	0607	Jan 1
1	one 5 one 3 one 2	by 5 by 3 by 2	angle of square square square by 1 sq	;	divide	d into:		2	for any	•	*aCambride
	one 8 one 5 one 3 one 2 and tr	by 8 by 5 by 3 by 2	stangle square square square square by 1 sq	; ;	, divid	ed into	:	2		Il correct 1 2 squares	
Size or rectang		1 by 1	1 by 2	2 by 3	3 by 5	5 by 8	8 by 13				
Least numbe square	er of	1	2	3	4	5	6	1	1 for all	1 4 entries	
,	(ii)	8						1			
1	(iii)	89	144					2	1 each		
(d)	<i>n</i> – 1							1	oe		e.g. $\frac{n(n-1)}{n}$
The least number of squares is: the same as the term number that comes between the position numbers of the width and the length OR the mean of the position numbers of the width and the length OR width (smallest) position plus 1 or length (largest) position minus 1 OR e.g. for n^{th} and $(n + 2)^{th}$ terms, answer of $n + 1$ oe						of the bers of	width the ength	2 C1ft	or 'posi number width/le 1 metho calculat connect C1ft sketche shown t	of ength od of tion/showing tion	1 for explaining least number of squares is sequential from 2 OR Identifying width/length as e.g. <i>n</i> and <i>n</i> + 2 'width' + 1 scores 1 unless width is identified as shorter side, and same for 'length' – 1 For C1 must show some understanding
										[Total: 26 +	C2 = 28 scaled to 24]

		May .
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0607

B N	IODELLING THE SOLAR SYSTEM			9	
1	8.4 2.8 8.9 3.6 9.2 4.0	3	2 for 5 or 4 correct 1 for 3 or 2 correct 0 for 1 or 0 correct	Note: In Q 1, 3, 4, 5 penalty of -1 once for not rounding to 2 sf	
2	(a) 7 points plotted	P2ft	P1 ft for 4, 5 or 6 correct plots ft for 3 points in Q1	Condone inaccuracies of up to 1 mm in plotting	
	(b) Mean (8.6, 3.2) plotted Line of best fit ruled through mean	P1 L1	Between (7.6, 1.9) and (8, 1.9) and between (9.6, 5) and (10, 5)	Condone inaccuracies of up to 1 mm in plotting and drawing	
3	$2.8 \times 10^9 \text{ (km)} / 3.2 \times 10^9 \text{ (km)}$	3 C	1 for 4.5 seen (maybe on axis) 1ft for 9.45 / 9.5 oe ft from line of best fit 1ft for answer C opportunity for minimum of 4.5 on graph or 4.5 and 9.45/9.5 oe in working	Note: In Q 1, 3, 4, 5 a penalty of -1 once for not rounding to 2 sf (anti-log value read from 4.5 and line of best fit)	
1	(m =) 1.5 [1.3 - 1.7] (c =) -9.6 / -9.7	1 1ft C	Maybe necessary to ft from <i>m</i> C opportunity if working shown for <i>m</i> and <i>c</i>	Note: In Q 1, 3, 4, 5 a penalty of -1 once for not rounding to 2 sf $(c = 3.2 - \text{their } m \times 8.6)$	
5	$7.6 \times 10^4 \text{ (days)} / 6.0 \times 10^4 \text{ (days)}$	1ft C	Maybe necessary to ft from <i>m</i> and <i>c</i> C opportunity if working shown	Note: In Q 1, 3, 4, 5 a penalty of -1 once for not rounding to 2 sf (anti-log (their $m \times \log(4.5 \times 10^9)$ + their c))	

		Way.
Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2010	0607

		ı	T	m.
(a)	$\log T = \log S^{m} + \log k$	M1		The state of the s
	$\log T = \log kS^{m}$	E1		\div by $\log = E0$
	$T = kS^{m} (\mathbf{AG})$			
				÷ by log = E0
(b)	$(k =) 2.0 \times 10^{-10} / 2.5 \times 10^{-10}$	1ft	ft from their c	(anti-log their c)
(c)	$T = \text{their } k \times (1.5 \times 10^8)^{\text{their } m}$			
	$T \approx 367 / 459$			
	OR			
	$365 = \text{their } k \times S^{\text{their } m}$	1ft	Substitution of their	
	$S \approx 1.5 \times 10^8$	1ft	values ft from 6(b)	
			and 4 and value of S	
			or <i>T</i> from table Q1	
Con	nment that is appropriate to result of their	1		
test				
		С	C opportunity if	
			working shown	
		C1	1 for <u>two</u> C	
			opportunities shown	
				[Total: 20 scaled to 16]