	IIVERSITY OF CAMBRIDGE INTERNATIONAL EXAN ernational General Certificate of Secondary Education	VINATIONS
NAME		
CENTRE NUMBER	CANDI	DATE ER
	RNATIONAL MATHEMATICS	0607/32
Paper 3 (Core)		May/June 2011
		1 hour 45 minutes
Candidates answer	on the Question Paper	
Additional Materials	: Geometrical Instruments Graphics Calculator	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

587

19242

4 4

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Unless instructed otherwise, give your answers exactly or correct to three significant figures as appropriate. Answers in degrees should be given to one decimal place.

For π , use your calculator value.

You must show all the relevant working to gain full marks and you will be given marks for correct methods, including sketches, even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 96.

For Examiner's Use					

This document consists of 17 printed pages and 3 blank pages.

Formula List

www.papaCambridge.com

Area, A , of triangle, base b , height h .	$A = \frac{1}{2}bh$
Area, A, of circle, radius r.	$A = \pi r^2$
Circumference, <i>C</i> , of circle, radius <i>r</i> .	$C = 2\pi r$
Curved surface area, A , of cylinder of radius r , height h .	$A = 2\pi rh$
Curved surface area, A , of cone of radius r , sloping edge l .	$A = \pi r l$
Curved surface area, A , of sphere of radius r .	$A=4\pi r^2$
Volume, <i>V</i> , of prism, cross-sectional area <i>A</i> , length <i>l</i> .	V=Al
Volume, V , of pyramid, base area A , height h .	$V=\frac{1}{3}Ah$
Volume, V , of cylinder of radius r , height h .	$V = \pi r^2 h$
Volume, V , of cone of radius r , height h .	$V = \frac{1}{3}\pi r^2 h$
Volume, <i>V</i> , of sphere of radius <i>r</i> .	$V = \frac{4}{3}\pi r^3$

(c)	5	For iner's
	Complete the pie chart accurately to show the frequencies of the remaining shoe sizes.	
	Label your sectors clearly.	[3]
(d)	Find the probability that a student chosen at random has a shoe size	
	(i) greater than 36,	
	(ii) greater than 30.	[1]
	Answer(d)(ii)	[1]
(e)	Find the percentage of those students with a shoe size greater than 32 who have a shoe greater than 33.	size
	Answer(e) %	[2]

			е 80° С	NOT TO SCALE	mbridge
In th DE = (a)	ne dia = BE (i)	agram, DEQ is parallel to AC . and angle $ACB = 80^{\circ}$. Write down the size of angle CEQ .			
	(ii)	Give a reason for your answer.	Answer(a)(i) Angle CEQ =		[1]
(b)	Find	the size of			[1]
	(i)	angle <i>BEQ</i> ,			
	(ii)	angle <i>DBE</i> ,	<i>Answer(b)</i> (i) Angle <i>BEQ</i> =		[1]
	(iii)	angle <i>BAC</i> .	Answer(b)(ii) Angle DBE =		[1]
			Answer(b)(iii) Angle BAC =	-	[1]

(a) For how many of the 28 days in February, would you expect it to rain?

Answer(a) [1]

www.papaCambridge.com

(b) (i) Complete the tree diagram for two consecutive days by putting the probabilities in the spaces.

16								
2 100 students estimate the length, <i>l</i> , of a piece of string.								
The results are shown in the table.								'dge.com
	Length (<i>l</i> cm)	$0 \le l < 30$	$30 \le l < 40$	$40 \le l < 50$	$50 \le l < 60$	$60 \le l < 70$	$70 \le l < 100$	
	Frequency	3	12	30	35	18	2	

(a) Using the mid-values of the class intervals, calculate an estimate of the mean.

Answer(a) cm [2]

(b) (i) Complete the cumulative frequency table.

Length (1 cm)	l < 30	l < 40	<i>l</i> < 50	<i>l</i> < 60	<i>l</i> < 70	<i>l</i> < 100
Cumulative frequency	3	15			98	100

[2]

(ii) On the grid opposite, complete the cumulative frequency curve.

(iii) Use your cumulative frequency curve to find the inter-quartile range.

Answer(b)(iii) cm [2]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of