UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papaCambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/33 Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2 Mark Scheme: Teachers'		hers' versior	n Syllabus r
		IGCSE – May/Ju	une 2012	0607 232
1	(a)	11 15	2	B1 for 11:50 or 3hrs 5 mins seen
	(b)	17 50	2	Syllabus r 0607 3030 B1 for 11:50 or 3hrs 5 mins seen 3000 B1 for 21:50 or 10:20 seen 9000
	(c)	8192	3	M2 for (4 × 1600) × 1.28 oe or M1 for 1600 × 1.28 oe A1 for 2048
	(d)	545.45	2	M1 for 3000 ÷ 5.50, implied by 545 or 545.5 or 545.45 [9]
2	(a) (i)	0.2 oe	1	
	(ii)	0.64 oe	2	M1 for 0.8×0.8 oe
	(b) (i)	56	1	
	(ii)	57	1	
	(iii)	58	1	
	(iv)	5147	1	
	(c)	57.8 or 57.77 to 57.78	2	M1 for evidence of using midpoints [9]
3	(a)	150	4	M1 for 9×5 , M1 for $\frac{1}{2} \times 15 \times 8$, M1 for $\frac{1}{2} \times 10 \times 9$
	(b) (i)	13.5 (13.45)	2	M1 for $10^2 + 9^2$
	(ii)	72.5 (72.45) ft	2ft	ft 59 + their (b)(i) M1 for $17 + 10$ + their $13.5 + 10 + 5 + 9 + 8$ [8]
4	(a)	Reflection (only) x = -1	B1 B1	Any indication of second transformation gets 0
	(b)	Rotation (only) 90° clockwise oe (3, 1)	B1 B1 B1	Any indication of second transformation gets 0
	(c)	Δ at (3, -4), (-1, -4), (-1, 2)	2	B1 for any enlargement scale factor 2 with correct orientation or any enlargement centre (3, 6) [7]

	Page 3	3 Mark Scheme: Teachers' version		Syllabus
	-	IGCSE – May/June	e 2012	0607 73
5	(a)	9.26 (9.263 to 9.264)	2	Syllabus r 0607 300 M1 for $400 \div 43.18$ $M1$ for $2 \times 75 + 2 \times \pi \times 30$ M1 for correct re arrangement
	(b) (i)	338 or 339 (338.4 to 338.6)	2	M1 for $2 \times 75 + 2 \times \pi \times 30$
	(ii)	$r = \frac{D - 2s}{2\pi} $ oe	2	M1 for correct re-arrangement M1 for correct division by 2π
	(iii)	$\frac{400 - 2 \times 85}{2 \times \pi}$	1	answer given [7]
6	(a)		2	Good curve with minimum point. -1 for poor curve e.g. y intercept \emptyset 0 either x intercepts \emptyset 0 (or both) too symmetrical
	(b)	(1.38, -2.35) (1.379, 2.345 to 2.346)	1, 1	SC1 for (1.4, -2.3)
	(c)	y = 4x - 5 drawn and ruled	D2	B1 for positive gradient and <i>y</i> intercept < 0 B1 cuts curve twice
	(d)	0.833 (0.8330) 2.69 (2.690)	1 1	SC1 for 0.83 and 2.7 [8]
7	(a) (i)	9.22 (9.219 to (9.220)	3	M2 for $\sqrt{(11^2 - 6^2)}$ or M1 for $h^2 + 6^2 = 11^2$ oe
	(ii)	348 or 347 (347.3 to 347.7)	2ft	M1 for $\frac{1}{3} \times \pi \times 6^2 \times \text{their}$ (a)(i)
	(b) (i)	207 (207.2 to 207.4)	2	M1 for $\pi \times 6 \times 11$
	(ii)	433 or 434 (433.0 to 433.7)	3ft	M2 for $2 \times \pi \times 6^2$ + their 207 or M1 for 4(or 2) $\times \pi \times 6^2$ [10]

	Domo	Mark Caborna, Taashara'		Sullahus May
	Page 4	4 Mark Scheme: Teachers' IGCSE – May/June 20		Syllabus 0607
L			<u></u>	and a contract of the contract
8	(a) (i)		2	Syllabus 0607 B1 Good curve with two branches B1 top branch not crossing <i>x</i> -axis an bottom branch crossing both axes penalty of 1 if branches joined
	(ii)	(-3,0)	1	
	(iii)	(0, -1.5)	1	
	(iv)	x = 2	1	
	ľ	<i>y</i> = 1	1	If 0 scored, SC1 for $y = 2$ and $x = 1$
	(b) (i)		1	Parabola with min point approx (–3, 0)
	(ii)	· • ·	1	Any indication of second transformation gets 0
		$\begin{pmatrix} -3\\ 0 \end{pmatrix}$	1	[9]
9	(a) (i)	7.52 (7.517 to 7.518)	2	M1 for 8 cos 20 oe
	(ii)	2.74 (2.736)	2	M1 for 8 sin 20 oe If 0 scored SC2 for reversed answers
	(b) (i)	12.52 (12.51 to 12.52), 8.74 (8.736)	1ft	ft their $(a) + 5$, their $(b) + 6$
	(ii)	(0)55.1 (55.06 to 55.1) or (0)55 but not without working	3	M2 for tan θ = their $\frac{12.52}{8.74}$ or M1 for tan θ = their $\frac{8.74}{12.52}$ + M1 for 90 - θ [8]

	Page \$	Mark Scheme: Teachers' version		Syllabus
IGCSE – May/June			– May/June 2012	0607 23
10	(a)	3 points plotted correctly	2	± small square, B1 for 2 correct
	(b)	Negative	1	Syllabus 0607 + small square, B1 for 2 correct
	(c)	19.2	1	
	(d)	(their 19.2, 67.2) plotted	1ft	
	(e)	ruled line drawn through the	$ere(d,t) \qquad 1$	must have –ve gradient and at least 3 points on either side.
	(f)	strict ft read from their line	at 36 1	[7]
11	(a) (i)	27, 31	1, 1	
	(ii)	4 <i>n</i> + 3	2	B1 for $4n$ or $kn + 3$ seen
	(b)	n^2	1	
	(c) (i)	63	1	
	(ii)	$n^2 + 4n + 3$ oe ft	1ft	e.g. $(n+2)^2 - 1$ ft their (b) + their (a)(i) [7]
12	(a) (i)	20°	2	B1 for angle <i>BOA</i> = 124 or M1 for 56 – 36
	(ii)	36°	1	
	(iii)	50°	1	
	(iv)	30°	1ft	ft 50 - their (a)(i)
	(b)	5.7 cm	2	M1 for $\frac{8.1}{5.4} = \frac{CO}{3.8}$ oe [7]