WWW. Papa

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			V .
Page 2	Mark Scheme: Teachers' version	Syllabus	.0
	IGCSE – May/June 2012	0607	100
	-		- YO

				6
1	(a) (i)	160 000 000 oe	2	M1 for $0.0239 \times 6.78 \times 10^9$ oe Implied by 1.62×10^8 oe ft their (i) or their more accurate value seen h
	(ii)	1.6×10^8 or 1.62×10^8	1ft	ft their (i) or their more accurate value seen
	(b)	0.482 (0.4823)	2	M1 for $\frac{3.27 \times 10^7}{6.78 \times 10^9} [\times 100]$ oe implied by figs 48
	(c)	2 520 000 000 or 2.52(0) × 10 ⁹ or 2520 million	3	SC2 for 2 520 4 or 2.5204 × 10 ⁹ or 2520.4 million M2 for ÷ 2.69 oe (M1 for evidence of 269 (%)) If M0, SC2 for 4 012 000 000 or 4.012 × 10 ⁹ or 4012 million or SC1 for 4 010 000 000 or 4 011 8 or 4.01 × 10 ⁹ or 4.0118 × 10 ⁹ or 4011.8 million (this is ÷ by 1.69) [8]
2	(a)	8.39 (8.393 to 8.394)	2	M1 for 18tan25 oe i.e. explicit expression
	(b)	130 (129.7) www 3	3	M1 for 0.5 × 18 × their (a) oe (75.5 to 75.6) M1 for 0.5 × 18 × 9 × sin 42 oe (54.19 to 54.20)
	(c)	12.8 (12.81) www 3	3	M1 for $9^2 + 18^2 - 2 \times 9 \times 18 \cos 42$ oe A1 for 164.2 seen [8]
3	(a) (i)	$\begin{pmatrix} 5 \\ -3 \end{pmatrix}$	1	
	(ii)	5.83 (5.830 to 5.831) ft	2 ft	ft their (i). Allow $\sqrt{34}$ as final answer M1 for $5^2 + 3^2$ oe
	(b) (i)	Reflection, $x = 5$	2	B1, B1 independent lose all marks if extra transformation
	(ii)	Enlargement, (0, 0) [Factor] 3	3	B1, B1, B1 independent lose all marks if extra transformation [8]
4	(a)	29.4	2	M1 for indication of use of mid-values (implied by figs 294)
	(b)	Curve through (20, 20), (30, 56), (40, 88), (80, 100)	3	B1 for 56, 88 and 100 seen P1 ft for three correct plots ft attempt at cum. frequencies. C1 for correct shape through at least 2 of their points
	(c) (i)	$27 \le t < 30$	1	
	(ii)	12 to 15	2	Dependent on P1 M1 for (34 to 37) or (21 to 22)
	(iii)	100 – their reading off cum freq graph (0.5 square accuracy)	2	Must be an integer. SC1 for their reading off cum freq graph (0.5 square accuracy) – may be on graph or answer 62 [10]

		my
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2012	0607

	IGCSL - May/June	2012	3001
	1010 (1000) 1010		Allow 576π as final answer M1 for $\frac{1}{3}\pi \times 8^2 \times 11(\frac{704}{3}\pi, 736.8 \text{ to } 73)$ M1 for $\frac{2}{3}\pi \times 8^3(\frac{1024}{3}\pi, 1071 \text{ to } 1072)$
5 (a) (i)	1810 (1808 to 1810)	3	Allow 576π as final answer
			M1 for $\frac{1}{3}\pi \times 8^2 \times 11(\frac{704}{3}\pi, 736.8 \text{ to } 73.$
			M1 for $\frac{2}{3}\pi \times 8^3 (\frac{1024}{3}\pi, 1071 \text{ to } 1072)$
			$\frac{1}{3}$ $\frac{1}$
(ii)	2.08 (2.079 to 2.082)	2 ft	ft their (i) × 1.15 ÷ 1000 oe
			M1 for their (i) × figs 115 soi by figs 208 or 2079
			to 2082
(b) (i)	744 (743.5 to 744.2) www 4	4	M1 for (sloping edge) $^2 = 11^2 + 8^2$ or better seen (=
			185) (sq root = 13.60)
			M1 for cone = $\pi \times 8 \times \sqrt{their(11^2 + 8^2)}$ (soi by
			341.6 to 341.9)
			M1 for hemisphere = $2\pi \times 8^2$ soi (401.9 to
			402.2)
(ii)	0.11	2 ft	ft 81.5 ÷ their (i) with same rounding requirement
			SC1 ft for 0.1094 to 0.1096 or 0.110 [11]
6 (a) (i)	86	1	
(ii)	188	1	
(iii)	4	2 ft	ft $0.5 \times$ their (ii) – 90 if answer positive
(111)	'	2 10	B1 for angle $BOD = 172$ (may be on diagram)
(b)	46	2	SC1 for angle $DBC = 46$ or angle $BAC = 40$ (may
		_	be on diagram) [6]
7 (a)	68.6 (68.57)	2	M1 for $720 \div (7.5 + 3)$ or better
(b) (i)	$9x$ or $9 \times x$ or $x \times 9$	2	M1 for $7.5 \times x$ or $3 \times \frac{x}{2}$ (not from $x + \frac{x}{2}$)
			2 2
(ii)	80 ft	1 ft	ft 720 ÷ their coefficient of x where answer to
			(b)(i) is in simplified form
(c)	5:1 oe	2	Allow non-reduced e.g. 600 : 120 or 7.5 : 1.5
			isw incorrect cancelling after correct answer M1 for 7.5 × their (b)(ii) and 1.5 × their (b)(ii) [7]
			() ()

			-
Page 4	Mark Scheme: Teachers' version	Syllabus	.0
	IGCSE – May/June 2012	0607	123

	<u>-</u>		3
8 (a) (i)		2	for reasonable shape including horiz SC1 for poor quality e.g. cubic
(ii)	-1, 0, 1	3	B1, B1, B1
(iii)	(0.775 or 0.7745 to 0.7746, – 0.186 or – 0.1859)	2	B1, B1 SC1 for 0.77 or 0.78 and – 0.19
(iv)	0.5	1	Condone – 1.04 or – 1.041 to – 1.040 or 0.942 or 0.9423
(v)	Rotational, [order]2 or point symmetry [about] (0, 0)	3	B2 (or B1 for rotational) condone 180 for order 2 B1 Deduct 1 if line symmetry also given
(b) (i)	$y = -\frac{x}{5}$ oe	1	
(ii)	Reasonable line through origin with negative gradient	1	Must cut curve 5 times
(iii)	$\pm 0.851 \text{ or } \pm 0.8506 \text{ to } 0.8507, 0$	2	B1, B1 [15]
9	Allow non-reduced fractions and decimal Do not allow words or ratios. isw any incorrect cancelling or converting	_	ntages.
(a)	$\frac{8}{30}$ oe www 2	2	M1 for $\frac{2}{5} \times \frac{4}{6}$ oe (0.266 to 0.267)
(b)	$\frac{108}{540} = \frac{1}{5}$ oe www 3	3	M2 for $\frac{2}{3} \times \frac{2}{5} \times \frac{1}{4} + \frac{1}{3} \times \frac{4}{6} \times \frac{3}{5}$ oe (M1 for either product)

(c)

M2 for combining valid probabilities e.g. $\frac{4}{6}$ then

[8]

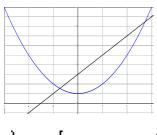
(M1 for first probability tried $\frac{4}{6}$)

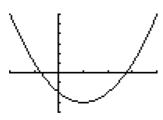
 $\times \frac{3 \ or \ 2}{5}$

			-
Page 5	Mark Scheme: Teachers' version	Syllabus N	. 2
	IGCSE – May/June 2012	0607	123

1

10 (a)	


- **(b)** v = -3 oe
- (c) (i) $-2.75 \le f(x) \le 1$
 - (ii) | f(x) > -3
- (d) $\frac{\log 3}{\log 2}$ or $\log_2 3$ final answer


2 Exponential shape over full domain cutting positive *x*-axis and negative *y*-axis

SC1 for partial domain only or slight upturn at hand side

- **B1, B1** Allow in words. Condone < . Allow y or x for f(x)
- 1 Allow $f(x) \ge -3$ and allow y or x and/or words
- SC1 for 1.58 or 1.584 to 1.585 may be on diagram or $\frac{\log 3}{\log 2}$ or $\log_2 3$ seen [8]

- **(b)** –4
- (c)

- -0.73, 2.73 cao
- (d) $\frac{x-3}{2}$ oe final answer
- (e) $\frac{3x+2}{(2x+3)(x-1)}$ final answer

- 2 **B1** for 6 seen
- 2 M1 for 2x + 3 = x 1 or better
- **B2** Curve(s) could be for other equation(s) but must lead to 2 correct solutions.

Allow **B1** for curve leading to correct solutions but poor quality.

Use of formula, **B1** for $\sqrt{(-2)^2 - 4(1)(-2)}$ or better, seen anywhere

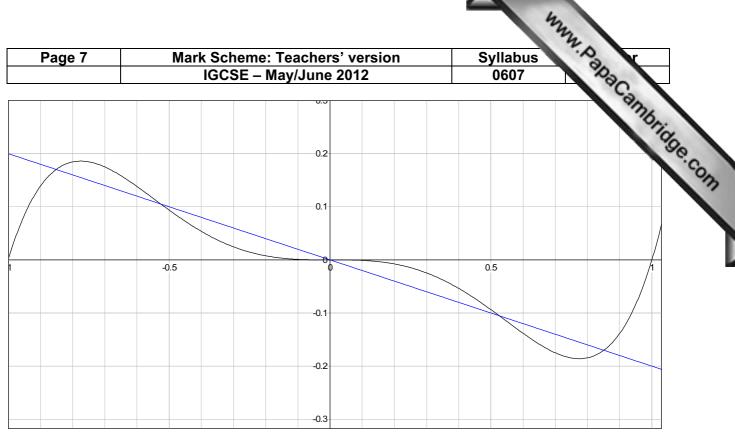
If form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or better B1 for

$$p = -(-2), r = 2(1) \text{ or better} \qquad \frac{2 \pm \sqrt{12}}{2}$$

Use of completing the square B1 for a correct completed square then B1 for correct explicit statement for x.

- **B1 B1** If 0 scored, **SC1** for -0.7 or -0.7321 to -0.7320 **and** 2.7 or 2.7320 to 2.7321 Without working **maximum score of 2**
- M1 for x = 2y + 3 or y 3 = 2x or $\frac{y}{2} = x + \frac{3}{2}$

i.e. a correct first step


Allow $2x^2 + x - 3$ for denominator. M1 for denominator (2x+3)(x-1) or $2x^2 + x - 3$ M1 for numerator (x-1) + (2x+3) with

M1 for numerator (x-1)+(2x+3) with or without brackets [13]

		2	
Page 6	Mark Scheme: Teachers' version	Syllabus	3
	IGCSE – May/June 2012	0607	100

	IGCSE – May/June	2012	0607
12 (a)	3 4 2 2 4 6	3	B1 $x = 5$ ruled B1 $y = -x$ ruled 1mm accuracy at $(-2, 2)$ and $(2, -2)$ B1 $y = 4 - 2x$ ruled Allow 1 mm accuracy at $(0, 4)$ and $(2, 0)$ In each case line must be long enough to enclose area in next part
(b)	Region correct cao	2	Dep on B3 SC1 if correct side of three correct boundaries
(c)	h = 3, k = -1 cao	2	SC1 for other point in region such that $x + 3y = 0$ [9]
13 (a)	Points (50, 8), (55, 10) and (45, 13) plotted	2	P1 for 2 correct points
(b)	Negative correlation cao	1	
(c) (i)	47 cao	1	
(ii)	11.9 cao	1	
(d)	-0.312x + 26.6 or -0.3123x + 26.58	2	isw if correct answer rounded B1 for $-0.312x + c$ or $kx + 26.6$ SC1 for $-0.31x + 27$
(e)	16.6	1 ft	ft their linear equation in (d) . Allow 17. Allow 2 sf in ft
(f)	Ruled line from $x = 30$ to 55, through (their 47, their 11.9) with 1 mm accuracy and 18 on the vertical axis with 1 small square accuracy	2	B1 if ruled line through mean point with negative gradient
(g)	Their integer reading at $x = 43$	1 ft	Integer only Strict ft their graph if ruled line with negative gradient [11]

Mark Scheme: Teachers' version IGCSE – May/June 2012 Page 7

y=x^5-x^3 y=-x/5