WWW. Papas

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	10
	IGCSE – May/June 2012	0607	73-

A INVE	ESTIGATION ADDITION TRIPL	LES				My
1	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6) (1, 6, 7) (2, 5, 7)	2	B1 for 6 or 7	First two nu	umbers can bo	e swapped
2	(1, 2, 3) (1, 3, 4)		B1			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5)		B1 cao			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6)		B1 cao			
	(1, 2, 3) (1, 3, 4) (1, 4, 5) (2, 3, 5) (1, 5, 6) (2, 4, 6) (1, 6, 7) (2, 5, 7) (3, 4, 7) (1, 7, 8) (2, 6, 8) (3, 5, 8)	4	B1	setting: asce triple and f	ation for syste ending order irst or last nu repeating pre	within each mbers in
3	5 6 7 8 9 10 11 4 6 9 12 16 20 25		13 14 15 36 42 49	2	B1 for 3	ft the numbers from their table unless wrongly counted.
4	3 5 7 9 11 13 15 1 4 9 16 25 36 49					No marks awarded here

		The same
Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2012	0607

5	: 2			correct order required
•	÷ 2, square OR square, ÷ 4	2	B1 square oe	correct order required Accept $\left(\frac{n-1}{2}\right)^2$ or $\frac{(n-1)^2}{4}$ on written here in correct form For B1 accept n^2 on its own OR these are square numbers
				Correct operations only. Accept bad form.
	Testing both shown	1		Communication: any example written out correctly: $7 - 1 = 6$; $\frac{6}{2} = 3$; $3^2 = 9$ OR $\frac{7 - 1}{2} = 3$; $3^2 = 9$
				$OR\left(\frac{7-1}{2}\right)^2 = \left(\frac{6}{2}\right)^2 = 9$
				OR $\left(\frac{7-1}{2}\right)^2 = 3^2 = 9$ $(7-1)^2 = 6^2$
				OR $\frac{(7-1)^2}{4} = \frac{6^2}{4} = 9$ OR $\frac{(7-1)^2}{4} = \frac{36}{4} = 9$

		my
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2012	0607

	Scaled	total 20		
	[To	otal: 23]		
	Communication	2	B2 for 2 B1 for 1	Communication seen in questions 2, 5, 6(a)(b), 7(a)(b)
(b) (c)	$\left(\frac{n-2}{2}\right)^2 + \left(\frac{n-2}{2}\right) \text{ oe}$	2	SC1 as in 6(c) (one bracketing error)	Communication: $\sqrt{1332} = 36.5$ and $37^2 - 37$ OR 37×36 OR $36^2 + 36$ OR 37×2 OR Solving $0.25n^2 - 0.5n = 1332$ by graph or quadratic formula Other forms e.g: $0.25n^2 - 0.5n$ $\left(\frac{n}{2}\right)^2 - \left(\frac{n}{2}\right)$; $\left(\frac{n}{2}\right)\left(\frac{n}{2}-1\right)$; $\frac{n(n-2)}{4}$; $\frac{n^2}{4} - \frac{n}{2}$; $\left(\frac{n}{2}-1\right)^2 + \left(\frac{n}{2}-1\right)$
7 (a)	2450	1		Communication: their 6(a) – 50 OR 49 ² + 49 OR 50 × 49
(c)	$\left(\frac{n-1}{2}\right)^2$ oe	2	SC1 $\frac{n-1^2}{2}$ or $(n-1 \div 2)^2$ or $(n-1/2)^2$ or $\frac{n-1^2}{4}$	Other forms e.g. $0.25n^2 - 0.5n + 0.25$; $\left(\frac{n}{2} - \frac{1}{2}\right)^2$; $\frac{(n-1)^2}{4}$ Allow use of x for n $\mathbf{SC0} \ n - 1 \div 2^2 \text{ (two errors in writing)}$
(b)	215	2	M1 107 soi	Communication: $\sqrt{11449} = 107$ and $107 \times 2 = 214$ OR Solving $0.25n^2 - 0.5n + 0.25$ = 11449 by graph or the quadratic formula OR solving an expression = 11449 using steps. OR $\sqrt{11449} \times 2 + 1$
0 (a)	2300	2	W1 30 S01	Communication: $\frac{100}{2} = 50$ or $\frac{101}{2} = 50.5$ and $50^2 = 2500$ or $50 \times 50 = 2500$ OR substitution in formula seen
6 (a)	2500	2	M1 50 soi	Communication: $\frac{100}{2} = 50$

		332
Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2012	0607

B MODE	LLING REGIOMONTANUS	S' STAT	ГИЕ	andr
1 (a) (i) (ii) (b)	$\frac{3^2 + 2^2 \text{ seen}}{\frac{3}{\sqrt{13}} \text{ oe}}$	1 1		Accept $4+9$ Accept 0.832 or $\frac{3}{3.6}$ or better
(c)	$\sin A = \frac{3}{\sqrt{10}\sqrt{13}}$	1		Substitution in the Sine Rule must be seen or implied Accept $\sin 56.3^{\circ} \times \frac{1}{\sqrt{10}}$ or $\frac{0.832}{\sqrt{10}} = 0.263 = \frac{3}{\sqrt{130}}$
2	$\frac{1}{\sqrt{10}}$ oe isw	3	B1 $[AB] = \sqrt{5}$ soi B1 $[AC] = \sqrt{2}$ soi B1 $\frac{1}{\text{their } AB \times \text{their } AC}$	Accept 0.31 to 0.325. Accept $\frac{1}{3.16}$ Allow $\sqrt{5} = 2.2$ and $\sqrt{2} = 1.4$ Incorrect answers must be accurate to 2 decimal places Communication: Pythagoras and Sine Rule (even if arithmetical errors)
3	$AB = \sqrt{x^{2} + 2^{2}}$ or $AB = \sqrt{x^{2} + 4}$ $AC = \sqrt{x^{2} + 1^{[2]}}$ $\sin A = \frac{\sin B}{b} = \frac{\frac{x}{\sqrt{x^{2} + 4}}}{\sqrt{x^{2} + 1}}$ or $\frac{x}{\sqrt{x^{2} + 4}} \frac{1}{\sqrt{x^{2} + 1}}$	3	M1 M1 M1 dependent	Assume $AB = \text{if clear from the diagram.}$ Accept $AB^2 = x^2 + 4$ Assume $AC = \text{if clear from the diagram.}$ Accept $AC^2 = x^2 + 1$ Sine Rule must be seen or implied OR accept $\frac{x}{\sqrt{x^2 + 4}\sqrt{x^2 + 1}}$ if square roots used Question 1 and 2.

Page 6	Mark Scheme: Teachers' version	Syllabus	
	IGCSE – May/June 2012	0607	

4 (a)	***************************************		G1 increasing from (0,0) to	Morio
	:	2	any single max lying on the left half of the grid	Allow 2 mm distance to the original along either axis
		- -	G1 decreasing & concave upwards after max. Not touching axis.	
(b)	1.4 to 1.42 [m]	1		
(c)	between 19° and 19.5°	2	M1 [sin A =] 0.33 or better	SC1 if 0.33 seen in part (a) or (b).
5 (a)	$ \frac{[\sin BAC =]}{xh} $ $ \frac{xh}{\sqrt{(x^2 + 1)(x^2 + (h+1)^2)}} \text{ oe } $	2	B1 correct numerator	Denominator must have the correct form.
_			B1 correct denominator	Communication: Pythagoras & Sine Rule
(b) (i)	[increases by] 10.5° to 11°	2	D 1 C 1	ft if one of the following in part
(ii)	[increases by] 0.3[m]		B1 for each	(a) x
			SC1 30° and 1.7 to 1.75	$\sqrt{(x^2+1)(x^2+(h+1)^2)}$
				5° and 0.3
				SC1 14.5° and 1.73
				$\frac{xh}{\sqrt{\left(x^2+1\right)\left(x^2+h^2\right)}}$
				no change and 1.73
				SC1 19.5° and 3.5
				$\frac{xh}{\sqrt{\left(x^2+1\right)\left(x^2+h^2+1\right)}}$
				18.7° and 0.08 or 0.09
				SC1 38.1° and 1.5
	Communication	1		Soon in question 2 or 5(c)
	Communication	1		Seen in question 2 or 5(a)