

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Original Com

*	
2	
2	
0	
7	
6	
0	
И	
0	
7	
œ	

CANDIDATE NAME									
CENTRE NUMBER						CANE NUME	DIDATE BER		

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41

Paper 4 (Extended)

May/June 2012

2 hours 15 minutes

Candidates answer on the Question Paper

Additional Materials:

Geometrical Instruments

Graphics Calculator

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Unless instructed otherwise, give your answers exactly or correct to three significant figures as appropriate. Answers in degrees should be given to one decimal place.

For π , use your calculator value.

You must show all the relevant working to gain full marks and you will be given marks for correct methods, including sketches, even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 120.

For Examiner's Use

This document consists of 19 printed pages and 1 blank page.

www.PapaCambridge.com

Formula List

For the equation

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Curved surface area, A, of cylinder of radius r, height h.

 $A=2\pi rh$

Curved surface area, A, of cone of radius r, sloping edge l.

 $A = \pi r l$

Curved surface area, A, of sphere of radius r.

 $A = 4\pi r^2$

Volume, V, of pyramid, base area A, height h.

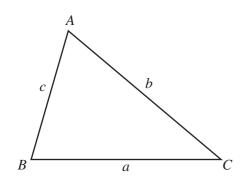
 $V = \frac{1}{3}Ah$

Volume, V, of cylinder of radius r, height h.

 $V = \pi r^2 h$

Volume, V, of cone of radius r, height h.

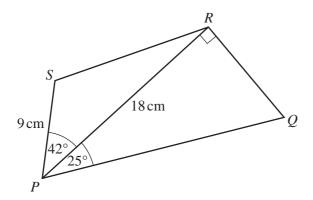
 $V = \frac{1}{3}\pi r^2 h$


Volume, V, of sphere of radius r.

$$V = \frac{4}{3} \pi r^3$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$


Area =
$$\frac{1}{2}bc \sin A$$

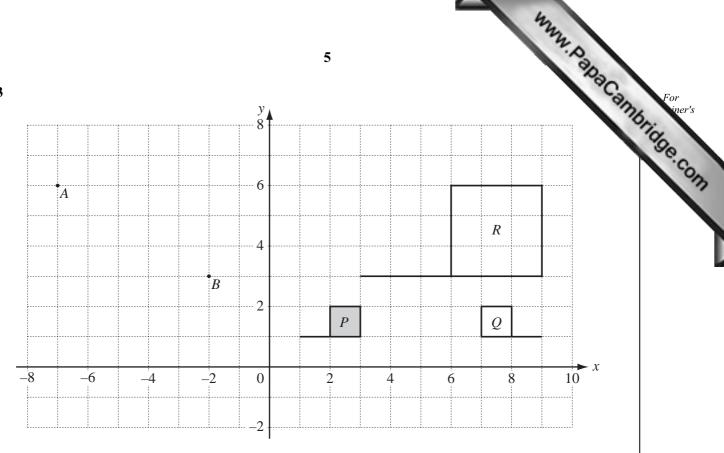
the population of Bangladesh was 2.39% of the world population. (Calculate the population of Bangladesh. Give your answer correct to 2 significant figures. (Answer(a)(i)	W.	
Give your answer correct to 2 significant figures. Answer(a)(i)	3	2
Give your answer correct to 2 significant figures. Answer(a)(i)	Answer all the questions.	Can
Give your answer correct to 2 significant figures. Answer(a)(i)	In July 2009, the population of the world was 6.78×10^9 .	
Give your answer correct to 2 significant figures. Answer(a)(i)	(a) The population of Bangladesh was 2.39% of the world population.	
Write your answer to $part(a)(i)$ in standard form. Answer(a)(ii)		
Write your answer to $part(a)(i)$ in standard form. Answer(a)(ii)		
Answer(a)(ii) [1] the population of Uganda was 3.27×10^7 . Alculate the population of Uganda as a percentage of the world population . Answer(b) % [2] the world population of 6.78×10^9 was an increase of 169% on the population in 1950 .	Answer(a)(i)	[2]
the population of Uganda was 3.27×10^7 . Answer(b)	(ii) Write your answer to part(a)(i) in standard form.	
the population of Uganda was 3.27×10^7 . Answer(b)	Answer(a)(ii)	[1]
alculate the population of Uganda as a percentage of the world population . Answer(b) $\%$ [2] where world population of 6.78×10^9 was an increase of 169% on the population in 1950.		[+]
Answer(b) $\%$ [2] the world population of 6.78×10^9 was an increase of 169% on the population in 1950.		
the world population of 6.78×10^9 was an increase of 169% on the population in 1950. Alculate the population in 1950.	Calculate the population of Oganda as a percentage of the world population.	
the world population of 6.78×10^9 was an increase of 169% on the population in 1950. Alculate the population in 1950.		
the world population of 6.78×10^9 was an increase of 169% on the population in 1950. Alculate the population in 1950.	$A_{1}(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x$	[2]
alculate the population in 1950.		[2]
	Give your answer correct to the nearest million.	

Answer(c)

[3]

NOT TO SCALE www.PapaCambridge.com

In the quadrilateral PQRS, PR = 18 cm and PS = 9 cm. Angle $PRQ = 90^{\circ}$, angle $RPQ = 25^{\circ}$ and angle $SPR = 42^{\circ}$.


(a) Calculate QR.

(b) Calculate the area of the quadrilateral *PQRS*.

Answer(b) cm^2 [3

(c) Calculate SR.

Answer(c) cm [3]

(a) (i) Write down the column vector \overrightarrow{AB} .

Answer(a)(i)[1]

(ii) Calculate $|\overrightarrow{AB}|$.

Answer(a)(ii) [2]

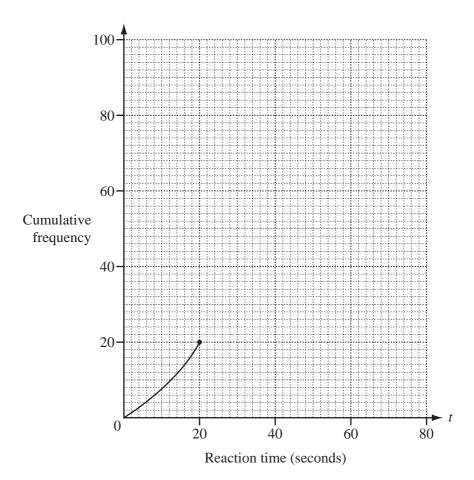
(b) Describe fully the **single** transformation that maps

(i) P onto Q,

Answer(b)(i).....

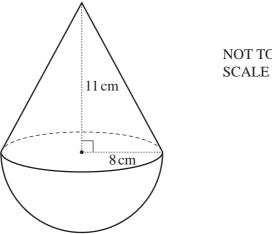
(ii) P onto R.

Answer(b)(ii)


100 students take part in a reaction time test. 4 The table shows their results.

dents take part in a reaction le shows their results.	on time test.	6		Man. A.	ADAC AIN For iner's COM
Reaction time (t seconds)	$0 \le t < 20$	$20 \le t < 30$	$30 \le t < 40$	$40 \le t < 80$	C.COM
Number of students	20	36	32	12	

(a) Calculate an estimate of the mean reaction time.


seconds [2]

(b)

On the grid, complete the **cumulative frequency** curve to show the information in the table. [3]

(c) Use	your cumulative frequency curve to fi	7 ind	MM. Pale	a Cambridge
(i)	the median,			199
(ii)	the inter-quartile range,	Answer(c)(i)	 seconds	[1]
(iii)	the number of students with a reaction	Answer(c)(ii) n time of at lea	seconds	[2]
		Answer(c)(iii)		[2]

NOT TO

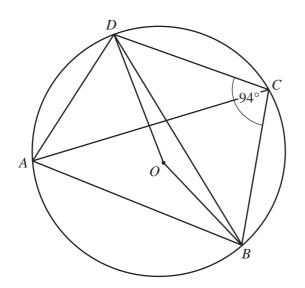
www.PapaCambridge.com

The diagram shows a solid made up of a cone and a hemisphere.

The hemisphere has a radius of 8 cm.

The cone has a base radius of 8 cm and a height of 11 cm.

(a) (i) Calculate the volume of the solid.


Answer(a)(i)	 cm^3	[3
Answer(a)(1)	 cm	

(ii) The solid is made of plastic and 1 cm³ of plastic has a mass of 1.15 g.

Calculate the mass of the solid. Give your answer in kilograms.

> Answer(a)(ii) kg [2]

(b) (i)	Calculate the surface area of the solid. $Answer(b)(i) \ \ $	cm ² [4]
(ii)	The surface is painted with silver paint. The cost of all the paint used is \$81.50. Calculate the cost per square centimetre. Give your answer correct to 2 decimal places.	
	Answer(b)(ii) \$	[2]

NOT TO SCALE

ABCD is a cyclic quadrilateral in the circle, centre O. Angle $DCB = 94^{\circ}$.

(a)	Cal	cu	late

(i) angle DAB,

Answer(a)(i)	[1]
	 [-]

(ii) the reflex angle *DOB*,

(iii) angle OBD.

(b) Angle $BDC = 40^{\circ}$.

Calculate angle DAC.

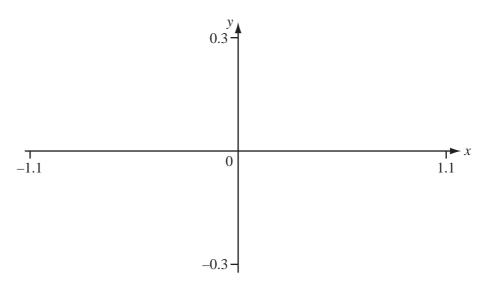
Answer(b)	 [2]

For iner's

The diagram shows Anne's car journey from A to C. The total distance from A to C is $720 \,\mathrm{km}$.

There is a motorway from A to B and other roads from B to C.

Anne travels on the motorway for 7.5 hours and on the other roads for 3 hours.


							Answer(d	a)		km/h	[2]
(b)	Anr	ne's av	erage s	peed fr	om A to	B is x k	m/h.				
	Her	r avera	ge spee	d from	B to C is	$s \frac{x}{2} \text{ km/}$	h.				
	(i)		_		in terms			distan	ice from A to C.		
	(ii)	Find	Anne's	averag	e speed	on the n	Answer(t	<i>b)</i> (i)			[2]
	г.	1.1	<i>.</i> •				Answer(l	<i>b)</i> (ii)		km/h	[1]
(c)	Fine	d the r	atio								
	Anr	ne's di	stance 1	ravelle	d on the	motorw	ay : Anne's	s dista	ance travelled on the other ro	ads.	

Answer(c) : : :

[2]

[2]

(a) (i) Sketch the graph of y = g(x) for $-1.1 \le x \le 1.1$.

(ii) Write down the zeros of g(x).

(iii) Find the co-ordinates of the local minimum point.

Answer(a)(iii) (______ , _____) [2]

(iv) The point (-0.5, 0.09375) is on the graph of y = g(x).

Complete the following statement.

The point (, -0.09375) is also on the graph of y = g(x). [1]

(v) Describe the symmetry of the graph of y = g(x).

[3]

(b)
$$x^5 - x^3 + \frac{x}{5} = 0$$

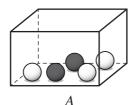
For iner's

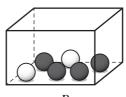
This equation can be solved by drawing a suitable straight line on the diagram opposite.

(i) Write down the equation of this straight line.

(ii) On the diagram in part(a)(i), sketch this straight line.

[1]


(iii) Two of the solutions to this equation are x = -0.526 and x = 0.526.


Find the other three solutions.

$$Answer(b)(iii) x =$$

or
$$x =$$

or
$$x =$$
 [2]

www.PapaCambridge.com

The diagram shows 2 boxes, A and B. Box A contains 2 black marbles and 3 white marbles. Box *B* contains 4 black marbles and 2 white marbles.

(a) Carlene takes out one marble at random from each box.

Calculate the probability that she takes out 2 black marbles.

Answer(a)	[2]
	 LJ

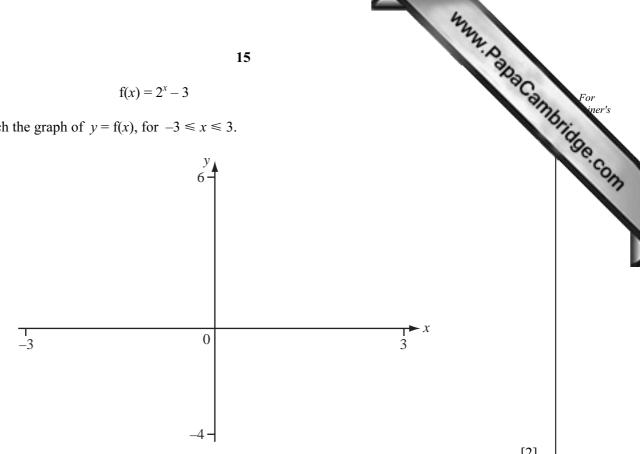
(b) Carlene returns the marbles to the boxes she took them from. Ricky then chooses a box and takes out 2 marbles at random.

The probability that he chooses box A is $\frac{2}{3}$.

Calculate the probability that Ricky takes out 2 black marbles.

Answer(b) [3]

(c) Ricky returns the marbles to the box he took them from. Ali takes marbles out of box B at random until she gets a **white** marble.


The probability that this is the *n*th marble taken out is $\frac{1}{5}$.

Find the value of *n*.

Answer(c) [3]

$$f(x) = 2^x - 3$$

(a) Sketch the graph of y = f(x), for $-3 \le x \le 3$.

[2]

(b) Write down the equation of the asymptote of the graph of y = f(x).

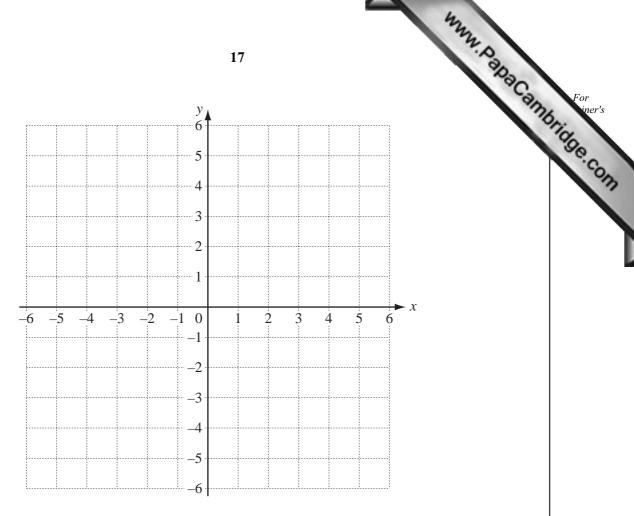
Answer(b)	Γ1	1
21113 WCI (0)	1 1	

(c) Write down the range of f(x) for

(i)
$$-2 \le x \le 2$$
,

(ii) $x \in \mathbb{R}$.

(d) Find the exact solution of the equation $2^x - 3 = 0$.


$$Answer(d) x =$$
 [2]

					2 1 1	0
11		f(x) = 2x + 3	g(x) = x - 1	h(x	$(x) = x^2 + 1$	DaCal
	(a)	Find $f(g(-5))$.				
			Answ	ver(a)		[2]
	(b)	Find x when $f(x) = g(x)$.				
			Answ	ver(b) x =		[2]
	(c)	Find x when $f(x) = h(x)$.				
		Give your answers correct to	2 decimal places.			
			Answ	ver(c) x =	or $x =$	[4]
	(d)	Find $f^{-1}(x)$.				
			Answ	ver(d)		[2]
	(a)	Find 1 1 in terms of				
	(e)	Find $\frac{1}{f(x)} + \frac{1}{g(x)}$ in terms of Give your answer as a single				
		Give your answer as a snigte	maenom.			

Answer(e)

For iner's

[3]

(a) On the grid, draw the lines

(i)
$$x = 5$$
, [1]

(ii)
$$y = -x$$
, [1]

(iii)
$$y = 4 - 2x$$
. [1]

(b) The region R is defined by

$$y \le 0$$
, $x \le 5$, $y \ge -x$ and $y \ge 4 - 2x$.

On the grid, label the region R.

(c) The point (h, k) is in the region R.

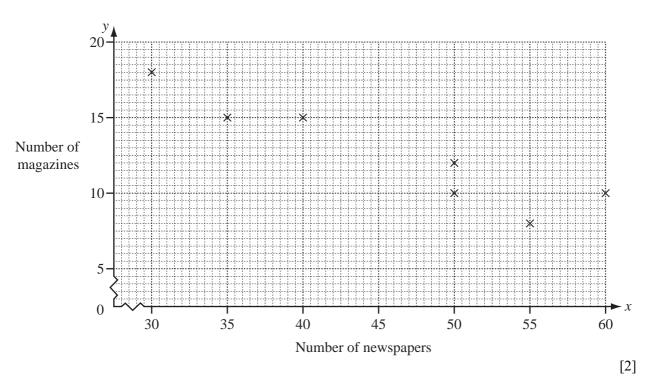
h and k are integers and h + 3k = 0.

Find the value of h and the value of k.

$$Answer(c)$$
 $h =$

$$k =$$
 [2]

[2]


13 Issa sells newspapers and magazines.

www.PapaCambridge.com The table shows the number of newspapers (x) and the number of magazines (y) sold during a period of 10 days.

Number of newspapers (x)	50	35	60	55	50	40	30	50	55	45
Number of magazines (y)	10	15	10	8	12	15	18	8	10	13

(a) Complete the scatter diagram.

The first seven points in the table have been plotted for you.

(b) Complete the sentence to make a correct statement about the information on the scatter diagram.

between the number of newspapers sold There is and the number of magazines sold. [1]

- (c) Find the mean number of
 - (i) newspapers sold,

Answer(c)(i)...... [1]

(ii) magazines sold.

Answer(c)(ii) [1]

	19 WWW. D.	
(d)	Find the equation of the line of regression for the number of magazines sold (y) and the of newspapers sold (x) . Write your answer in the form $y = mx + c$.	² aCant
	Answer(d) y =	[2]
(e)	Find the value of y when $x = 32$.	
	Answer(e)	[1]
(f)	Draw the line of regression accurately on the scatter diagram.	[2]
(g)	Use your graph to predict the number of magazines sold when 43 newspapers are sold.	
	Answer(g)	[1]

20

BLANK PAGE

www.PapaCambridge.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.