CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/03

Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme		Syllabus Syllabus	
		IGCSE – Octobe	r/November 2012	0607 23	
	(a)	275	1	and the	
	(a)	375	1	010	
	(b)	15	1		
	(c)	270	2	Syllabus 0607 M1 for 450 ÷ 5 soi	
	(d)	54	2	M1 for $\frac{150}{1000} \times 360$ soi	
	(e)	$\frac{9}{20}$	2	B1 for $\frac{450}{1000}$ soi	
	(a)	(0, 3)	1		
	(b)	(8, 0)	1		
	(c)	$\left -\frac{3}{8}\right $	2FT	FT from <i>their</i> 3 ÷ 8 M1 for attempt to use gradient formula	
	(d)	(4, 1.5) oe	2FT	B1, B1 FT from <i>their</i> (a) and (b)	
	(e)	$\begin{pmatrix} 4\\1.5 \end{pmatrix}$	1FT	FT from <i>their</i> (d)	
;	(a)	432	2	B1 for either 288, 144 or 576 seen or M1 for correct method shown	
	(b) (i)	216000	2FT	FT <i>their</i> (a) × 500 M1 for 500 soi or M1 for Area × length	
	(ii)	0.216(000)	1FT	FT <i>their</i> (b)(i) \div 100 ³	
	(c)	9450	2	M1 for $200 \times 5 \times 9.45$	
	(a)	56.25	2	M1 for (5.2 –(–2.3)) soi by 7.5 or figs 5625 seen SC1 for 8.41	
	(b)	x = 2, y = 6	2	B1 B1	
	(c)	$6x^8$ final answer	2	B1 for kx^8 or $6x^k$	
	(d)	6	3	B2 for $3x - 13 = 5$ or better B1 for $6x - 10$ or $3x + 3$ soi	
	(e)	5	2	B1 for 2×2^4 soi or for $16 + 16$ soi	

	Page 3	Mark Scheme		Syllabus Syllabus	
	•	IGCSE – October/Novem	ber 2012	0607 202	
		I		an.	
5	(a)	1	1	OTIC	
	(b)	2.15	1	3	
	(c)	2	1	Syllabus 0607 Annor Babac annor Babac	
	(d)	1	1		
	(e)	4	1		
6	(a)	70°	1		
	(b)	$y = 30^{\circ}$ $z = 60^{\circ}$	1 2FT	FT 90 – <i>their y</i> M1 for angle <i>TAO</i> = 90 soi	
	(c)	116°	3	B1 for 720° seen or implied (e.g. by 580) and M1 for $5w + 140 = their$ 720 soi or B1 for 320° and M1 for $\frac{320}{5}$	
7	(a)	24	3	M2 for $\sqrt{26^2 - 10^2}$ M1 for $26^2 = 10^2 + x^2$ oe	
	(b)	120	2FT	FT 10 × <i>their</i> 24 ÷ 2 M1 for 0.5 × 10 × <i>their</i> 24	
	(c)	22.6 (22.61 to 22.62)	2FT	FT their 24 used correctly in trig ratio M1 for correct use of trig ratio	
8	(a)	Correct graph	3	M1 for quadratic opening upwards M1 for <i>x</i> -intercepts close to 0 and 4 M1 for smooth curve dep on first M1	
	(b)	(2, -8)	1		
	(c)	x = 2	1		
	(d)	Correct graph	2	M1 for <i>y</i> -intercept at approximately – 4, or M1 for straight line with positive gradient	
	(e)	(0.392, -2.825), (5.108, 11.325)	3	B1 B1 for correct answers to 2 decimal place accuracy or better A1 for answers to 3 decimal places	

·	Page 4		Mark Scheme IGCSE – October/November 2012		SyllabusNo0120607
9	(a) (i)	$\frac{5}{9}$	(0.555, 55.55%)	1	ambridge
	(ii)	$\frac{4}{9}$	(0.444[4], 44.4[4]%)	1	Syllabus 012 0607 ana cambridge.co
	(iii)	$\frac{3}{9}$	oe (0.333, 33.3%)	1	
	(iv)	$\frac{3}{9}$	oe (0.333, 33.3%)	1	
	(v)	$\frac{2}{9}$	(0.222, 22.2%)	1	
	(b)	7, 1	8, 9	1	
10) (a)	500)	3	M2 for $\frac{5000 \times 4 \times 2.5}{100}$
					M1 for $5000 \times \frac{2.5}{100}$ SC2 for answer 5500
	(b)	19.	06	4FT	M2 for $5000(1.025)^4$ oe M1 for $5000(1.025)^n$ oe <i>n</i> integer > 1 A1 for $5519.06 (5520, 5519, 5519.1, 5519.10, 5519.064)B1FT indep for their 5519.06 - 5000 - their (a)but only if at least M1 earned$

	Page \$	5 Mark So IGCSE – October/		$\begin{array}{c c} \hline Syllabus \\ \hline 2 \\ \hline 0607 \\ \hline 0707 \\ \hline 0707 \\ \hline $
11	(a)	707 (706.5 to 707.0)	2	M1 for $\pi \times 15^2$ or better
	(b)	118 (117.7 to 117.8)	1FT	FT their (a) ÷6
	(c)	15.7 (15.70 to 15.71)	2	M1 for $\frac{60}{360} \times 2 \times \pi \times 15$ or better soi
	(d)	37.5	4	M3 for $\frac{6 \times 2.75 - 12}{12} \times 100$ or $\frac{6 \times 2.75}{12} \times 100 - 100$ oe
				M2 for $\frac{6 \times 2.75 - 12}{12} [\times 100]$ or $\frac{6 \times 2.75}{12} \times 100$ oe or M1 for <i>their</i> 16.5 - 12 oe or B1 for 16.5 seen
12	(a)	$\frac{4}{5}$	1	
	(b) (i)	correct tree diagram	2FT	FT <i>their</i> (a) B1 for one correct pair for plant 2
	(ii)	$\frac{1}{25}$ (0.04, 4%) cao	2FT	FT $\frac{1}{5} \times their \frac{1}{5}$ M1 for $\frac{1}{5} \times their \frac{1}{5}$
	(iii)	$\frac{8}{25}$ (0.32, 32%) cao	3FT	FT $\frac{1}{5} \times their \frac{4}{5} + their \frac{4}{5} \times their \frac{1}{5}$ M2 for $\frac{1}{5} \times their \frac{4}{5} + their \frac{4}{5} \times their \frac{1}{5}$ oe M1 for one of products
13	(a)	Translation only, $\begin{pmatrix} -3 \\ -2 \end{pmatrix}$ oe	2	B1 for translation B1 for column vector – can be in words
	(b)	Reflection only, $x = -2$	2	B1 for reflection, B1 for equation of line