Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/62
Paper 6 (Extended)
May/June 2016
MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	62

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

A INVESTIGATION			SUMS OF CONSECUTIVE INTEGERS			
Question		nswe			Marks	Part Marks
1	27				1	C opportunity
2 (a) (b)	Sequence $5,6,7,8,9,10$ $10,11,12, \ldots \ldots \ldots, 40$ $2,3,4,5,6,7,8$ $9,10,11,12$ $4,5,6,7,8,9,10$ OR 24, 25 add and divide by 2 oe	6 31 7 4 7 2	Mean 7.5 25 5 10.5 7 24.5	Sum 45 775 35 42 49	5	B1 for each row C opportunity
3 (a) (b) (c)	100 $\frac{2 k+99}{2}$ oe final answer their (a) \times their (b) isw				$\begin{gathered} 1 \\ 1 \\ 1 \mathrm{FT} \end{gathered}$	$50(2 k+99)$ oe
4	$\begin{aligned} & \text { number of terms }=n \\ & \text { mean }=\frac{2 k+n-1}{2} \text { or } \\ & {[\text { mean }=] \frac{k+k+n-1}{2}} \end{aligned}$				2	B1 for each statement
5 (a) (b)	$\begin{aligned} & {[2 k+] n-1 \text { is even }} \\ & \text { and } \\ & \text { even }+ \text { even }=\text { even or even } / 2 \text { is an integer } \\ & {[2 k+] n-1 \text { is odd }} \\ & \text { and } \\ & \text { odd }+ \text { even }=\text { odd or odd } / 2=\ldots .5 \end{aligned}$					

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	62

Question	Answer	Marks	Part Marks
6 (a) (b)	[1 and 84] 3 and 28 7 and 12 8 and 10.5 [12 and 7] [28 and 3] [84 and 1] [21 and 4] [4 and 21] for any 2 correct sequences	3 1	B1 for each pair, allowing reversed order $\begin{aligned} & 27,28,29 \\ & 9,10,11,12,13,14,15 \\ & 7,8,9,10,11,12,13,14 \end{aligned}$
7	Any one of $32,64,128, \ldots$	1	C opportunity
Communication seen in one of 1,2(a), 2(b), 7		1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	62

3 MODELLING T	MODELLING TRAFFIC FLOW		
Question	Answer	Marks	Part Marks
1 (a) (b)	15 $\frac{1000 x}{60 \times 60}$ oe	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	C opportunity
2	$\frac{1}{125} x^{2}$ or $0.008 x^{2}$ or $8 \times 10^{-3} x^{2}$ oe	2	M1 $20=k 50^{2}$ or better
3 (a) (b) (c) (d) (e) (i) (ii) (f) (i) (ii)	1000x Numerator = distance in one hour Denominator $=$ distance between cars oe Correct shape 1570 or 1572 to 1573 22.3 to $22.4[\mathrm{~km} / \mathrm{h}]$ It is a low speed oe decreases oe increases oe	1 1 2 1FT 1FT 1 1	B1 for a curve with a single max turning point, above the x-axis at $x=60$ soi C opportunity FT their $k, 0.002 \leqslant k \leqslant 0.8$ FT their $k, 0.002 \leqslant k \leqslant 0.8$ Dependent on (e)(i) <45

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0607	62

Question	Answer	Marks	Part Marks
4 (a) (b) (c)	$\frac{1000 x}{4+0.556 x}$ oe isw $1000 x=7200+(1800 \times \text { their } 0.556) x$ or $\frac{1000 x}{1800}=\text { their } 0.556 x+4(\text { or better })$ No, and their correct x given or No, and correct working leading to " x is negative" or No, and correct working leading to an impossible equation	1 M1FT A1	C opportunity correct shape, through $(0,0)$ implied, and reaching $x=50$ FT $\frac{1000 x}{4+\text { their } 0.556 x}$ only C opportunity If x found then must be correct.
5	Anything which rounds to $35[\mathrm{~km} / \mathrm{h}]$	1FT	FT their $k, 0.002 \leqslant k \leqslant 0.1$ and $\frac{1000 x}{4+\text { their } 0.556 x}$
Communication in three of 1(a), 3(c), 4(a) and 4(c).		2	C1 if seen in two of them.

