Notes	Mark Scheme	Syl
	IGCSE EXAMINATIONS – JUNE 2003	0580/0
		30

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
$\sqrt{}$	Work followed through after an error: no further error made
/-	Work followed through and another error found

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 56

SYLLABUS/COMPONENT: 0580/01, 0581/01

MATHEMATICS

Paper 1 (Core)

Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

age 1	Mark So	heme	Syllabus
	IGCSE EXAMINATION		003 0580/0581
* i	ndicates that it is necessary to k	ook in the worki	Syllabus 003 0580/0581 of the state of the s
1	(a) 19.55249(345)	1	
	(b) 19.55	1 √	
2	(a) 3.3 to 3.7	1	Allow negative values
	(b) - 0.9	1 √	2.6 - I(a)I
3	(a) $\frac{33}{50}$ 67% 0.68	1	Allow 0.66, 0.67, 0.68 o.e.
	(b) $\frac{17}{25}$	1	
4	42	2*	M1 72 ÷ 12
5	781000	2*	M1 for 550 000 x 1.42
6	366	2*	M1 for "97.60" x 3.75
7	$\frac{4}{9}$	2*	M1 for $\frac{9}{4}$ or 0.44, $2\frac{1}{4}$, $\frac{2}{3}$, $\frac{2}{3}$
8	(a) - 30 c.a.o.	1	
	(b) $v(4u-3)$	1	c.a.o.
9	1	3*	M1 6 – 3x
	2		M1 $x + 3x = 6 - 4$
10	(a) 0.004	2*	M1 figs 2 : 500000 or figs 4 in
	(b) 4 x 10 ⁻³	1 √	answer
11	a = 3, b = -1	3*	M1 adding or x 2 nd equation by 3 and subtracting
			A1 A1 o.e. (Rearrange and substitute scores M1)
			Working essential if only one answer is correct
12	(a) 88 c.a.o.	1	Not 88.0
	(b) 85.5, 86.5	1, 1	B1 both correct and reversed
13	(a) 20 05	1	Allow 20:05, 8.05 pm . Not 20.5 or 20h5m
	(b) (i) 0.4	2*	M1 30 ÷ 75
	(ii) 24	1 √	(i) × 60

Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

			224
Page 2	Mark Schem	е	Syllabus
	IGCSE EXAMINATIONS		03 0580/0581
14	(a) $\frac{3+4}{6} = \frac{7}{6}$	2*	Syllabus 03 0580/0581 M1 for first term o.e. M1 for improper fractions
	(b) $\frac{6}{5} \times \frac{7}{4} = \frac{21}{10}$	2*	M1 for improper fractions
15	(a) (i) 28	2*	M1 for ½ x 8 x 7
	(ii) 176	2√	M1 for $4 \times (i) + 8^2 \mathbf{A1} $
	(b) pyramid	1	
16	(a) 90	1	
	(b) 7.71	2*	M1 sin40 = PB/12 or <u>12</u> = <u>PB</u> sin(a) sin40
	(c) 113	2*	M1 π x 6 ²
17	(a) 9.59	2*	M1 $8.3^2 + 4.8^2$
	(b) 210	3*	M1 tan x = $\frac{4.8}{8.3}$ M1 180 + x at P If sin or cos used then allow $$ from (a). NO marks for scale drawing
18	(a) (i) 35	1	
	(ii) 25	1√	60 - (i)
	(b) similar	1	
	(c) 11(.0)	2*	M1 <u>16.6</u> = <u>CX</u> o.e. Not 11.1 8.3 5.5
			or M1 for $\frac{16.6}{\sin 120} = \frac{CX}{\sin 35}$
	TOTAL	56	

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02

MATHEMATICS

Paper 2 (Extended)

Page 1	Mark Scheme	Syllabu
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Page 1		lark Schei	me Syllabu	8
	IGCSE EXAM	IINATIONS	S – JUNE 2003 0580/0581	ASC.
				Question Total
Question Number	Mark Scheme	Part Marks	Notes	Question Total
1	0.049 < 5% < 5/98 o.e.	2	M1 for figs 51 seen after 0, SC1 for 2 correct entries	2
2 (a)	7.85 to 8(.00)	1		
(b)	56.25 to 57.5(0)	1		2
3	194(.4)	2	M1 for 54 × 3600/1000 or SC1 for <i>figs</i> 194seen	2
4	$\begin{bmatrix} -4 \\ -7 \end{bmatrix}$ c.a.o.	1		
5	38	2	M4 for CCF//47 : 40\ a a i h./	2
3	30		M1 for 665/(17 + 18) s.o.i. by equivalent complete method	2
6	201.25	2	allow 201 or 201.3 in ans. space if 201.25 seen M1 for 17.5 × 11.5 s.o.i.	2
7	4 < x <6	2	SC1 for either one after 0, M1 for 8<2x<12 s.o.i.	2
8	±11 - ±1331 14 196 - -7 49 -	3	2 for 4 or 5 correct 1 for 2 or 3 correct	3
0 (-)	1 0404 > 04-			17
9 (a)	$\frac{1}{6}$ or 0.16() or 0.17	1		
(b)	art 9.5(°)	2	M1 for correct use of tan o.e.	3
10	$\frac{x+11}{(x-3)(x+4)}$ o.e.	3	M1 for denom. $(x-3)(x+4)$ o.e. M1 for $2(x+4)-(x-3)$ o.e.	3
11	integer $\sqrt{(112/7)}$	1	accept $\sqrt{16}$ or 4	
	rational nos. 2.6 4/17	1 1 1	accept 0.235 accept 3.46	4
12 (a)	irrational no. $\sqrt{12}$	2	M1 for $2p + 3p + 90 = 180$ o.e.	4
(b)	30	2	or SC1 for 36 or 54 seen www. M1 for $q + 5q = 180$ o.e. or SC1 for 150 seen	4
		1	1	14

Page 2	Mark Scheme	Syllabu	,
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	2

(b) $1200 \sqrt{}$ 1 $\sqrt{}$ for $(12 \times their a)$ 4 (c) $10 < x < 30$ ht $30 mm$ 1 1 4	Page 2		rk Sche	me Syllabu	· A
(a) $10 17 4 -6 -9 0$		IGCSE EXAMI	NATION	S – JUNE 2003 0580/0581	Day
(a) $10 17 4 -6 -9 0$					de
(a) $10 17 4 -6 -9 0$	13 (a)	100	1		13
(a) $10 17 4 -6 -9 0$	(b)	1200 √	1	$\sqrt{\text{ for } (12 \times \text{ their a})}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(c)				4
(a) 50.3 2 M1 for \(\frac{(7087000 - 4714900)}{4714900}\) o.e. must be recognisable complete correct method (i) 4710000 or 4.71 × 10 ⁶ 1 accept 7.09 × 10 ⁶ , ignore superfluous zeros 4 (a) 24.7 2 M1 for 80 × sin 18° seen (b) 46.2 2 M1 for 3(4 + 11.4) o.e. (no MRs) 3 × 3.8 does not imply 11.4 4 (a) Correct shear ±1mm 2 M1 for shear with either axis invariant (i) Correct stretch ±1mm 2 M1 for stretch with either axis invariant (ii) \(\frac{1}{0} \frac{0}{0} \frac{3}{0} \cap \text{cao} \text{ 11000} \text{ 1} 2 SC1 if accurate but no arcs SC1 if accurate but no line accurate bisector of ABCD, with two pairs of arcs T marked in correct 1 Indep. 6	14 (a)		2	SC1 if 4 or 5 correct	
(i) $4710000 \text{ or } 4.71 \times 10^6$ 1 $accept 7.09 \times 10^6$, ignore superfluous zeros 4 (a) 24.7 2 M1 for $80 \times \sin 18^\circ$ seen (b) 46.2 2 M1 for 30×10^6 3 accept 7.09 × 10°, ignore superfluous zeros 4 (a) 24.7 2 M1 for $30 \times \sin 18^\circ$ seen (b) 46.2 2 M1 for $30 \times \sin 18^\circ$ seen (a) $20 \times \sin 18^\circ$ seen (b) 3×3.8 does not imply 11.4 4 (c) 3×3.8 does not imply 11.4 4 (d) 3×3.8 does not imply 11.4 5 (e) 3×3.8 does not imply 11.4 5 (f) 3×3.8 does not imply 11.4 5 (g) 3×3.8 does not imply 11.4 5 (h) 3×3.8 does not imply 11.4 5 (i) 3×3.8 does not imply 11.4 5 (ii) 3×3.8 does not imply 11.4 5 (iii) 3×3.8 does not imply 11.4 5 (iv) 3×3.8 does not imply 1	(b)	$\frac{1}{2} \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix} $ oe	2	1 for $\frac{1}{2}$ s.o.i., 1 for $k\begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix}$ s.o.i.	4
	15 (a)	50.3	2	M1 for $\frac{(7087000-4714900)}{4714000}$ o.e.	
(ii) 7.087×10^6 1 accept 7.09×10^6 , ignore superfluous zeros 4 (a) 24.7 2 M1 for $80 \times \sin 18^\circ$ seen (b) 46.2 2 M1 for $3(4+11.4)$ o.e. (no MRs) 3×3.8 does not imply 11.4 4 (a) Correct shear ± 1 mm 2 M1 for shear with either axis invariant (i) Correct stretch ± 1 mm 2 M1 for stretch with either axis invariant (ii) $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ cao 1 M1 for stretch with either axis invariant (ii) $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ cao 1 SC1 if accurate but no arcs of AD, with two pairs of arcs accurate bisector of 8 CD, with two pairs of arcs T marked in correct 1 Indep. 6				must be recognisable complete	
Superfluous zeros 4	(b) (i)	4710000 or 4.71 × 10 ⁶	1		
(i) Correct shear ±1mm 2 M1 for shear with either axis invariant (ii) Correct stretch ±1mm 2 M1 for stretch with either axis invariant (iii) $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ cao 1 M1 for stretch with either axis invariant (ii) accurate perp bisector of AD, with two pairs of arcs (ii) accurate bisector of <bcd, 1="" 6<="" arcs="" correct="" in="" indep.="" marked="" of="" pairs="" t="" td="" two="" with=""><td>(ii)</td><td>7.087×10^6</td><td>1</td><td></td><td>4</td></bcd,>	(ii)	7.087×10^6	1		4
(a) Correct shear ±1mm	16 (a)	24.7	2	M1 for 80 × sin 18° seen	
(a) Correct shear ±1mm 2 M1 for shear with either axis invariant (i) Correct stretch ±1mm 2 M1 for stretch with either axis invariant (ii) $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ cao 1 SC1 if accurate but no arcs SC1 if accurate arcs but no line (ii) accurate perp bisector of AD, with two pairs of arcs (iii) accurate bisector of SC1 if accurate but no arcs SC1 if accurate arcs but no line (iii) accurate bisector of SC1 if accurate but no arcs SC1 if accurate but no arcs SC1 if accurate arcs but no line Indep. 6	(b)	46.2	2	, , , , , , , , , , , , , , , , , , , ,	4
					16
(ii) $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ cao 1	17 (a)	Correct shear ±1mm	2		
(a) 1:1000 1 (i) accurate perp bisector of AD, with two pairs of arcs (ii) accurate bisector of <bcd, 1="" 5<="" arcs="" correct="" in="" indep.="" marked="" of="" pairs="" t="" td="" two="" with=""><td>(b) (i)</td><td>Correct stretch ±1mm</td><td>2</td><td></td><td></td></bcd,>	(b) (i)	Correct stretch ±1mm	2		
(i) accurate perp bisector of AD, with two pairs of arcs (ii) accurate bisector of <bcd, 2="" 6<="" accurate="" arcs="" but="" correct="" if="" in="" line="" marked="" no="" of="" pairs="" sc1="" t="" td="" two="" with=""><td>(ii)</td><td>l cao</td><td>1</td><td></td><td>5</td></bcd,>	(ii)	l cao	1		5
of AD, with two pairs of arcs (ii) accurate bisector of <bcd, 1="" 6<="" accurate="" arcs="" but="" correct="" if="" in="" indep.="" line="" marked="" no="" of="" pairs="" sc1="" t="" td="" two="" with=""><td>18 (a)</td><td>1:1000</td><td>1</td><td></td><td></td></bcd,>	18 (a)	1:1000	1		
<bcd, arcs<="" of="" p="" pairs="" two="" with=""> T marked in correct SC1 if accurate arcs but no line 6</bcd,>	(b) (i)	of AD, with two pairs of	2		
T marked in correct 1 Indep. 6	(ii)	<bcd, of<="" pairs="" td="" two="" with=""><td>2</td><td></td><td></td></bcd,>	2		
		T marked in correct	1	Indep.	6

Page 3	Mark Scheme	Syllabu	0
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	80

19 (a)	correct demonstration	2	M1 for 20x + 80y seen	17/
()		_	With tell 20% + 30y coon	
(b)	x + 2y = 120 o.e. fully simplified	2	M1 for 25x + 50y = 3000 seen condone inequality signs for method mark. Ignore \$	
(c)	straight line thr. (120,0) and (0,60) 60 cars, 30 trucks	1√ 1	√ from <i>their b</i>). Line must be complete , and be on given grid also allow 80,20; 100,10; 120,0 or points on the correct section of the line $(60 \le x \le 120)$	6
				6
20 (a)	art 0.1, 0.3, 0.6, 1, 1.7 and 3	3	SC2 for 4 or 5 correct SC1 for 2 or 3 correct	
(b)	correct curve drawn	2	P1 for correct or √ 6 or 7 points correctly plotted ±1mm	
(c)	1.6 ≤ x <1.65	1		6
				6

TOTAL MARKS 70

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 104

SYLLABUS/COMPONENT: 0580/03, 0581/03

MATHEMATICS

Paper 3 (Core)

		· · ·
Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Page 1		Mark Scheme Syllabus				
		IGCSE EXAMINATION	IS – JUNE	2003 0580/0581		
1 4-		7	1 4			
(a)	7	1			
(b)	42	1			
(с) (i)	9	1	Syllabus 2003 0580/0581		
	(ii)	8	2	M1 for evidence of idea of mid-value		
	(iii)	8.3	3	M1 for 4 x 5 + 7 x 6+ 3 x 12 or 41 M1 (dep) for ÷ 50		
(d)	5cm	2	M1 for 1cm to 2 students o.e.		
(e))	36°	2	M1 for <u>5</u> x 360 50		
(f))	\$7.5(0)	2	M1 ÷ 3		
(g)	22	2	M1 for <u>11</u> (x 100) 50 SC1 for <u>19</u> (x 100) = 38%		
				50 100) = 3070		
(h) (i)	6	1			
		50		A count or in releast fractions		
	(ii)	14	1	Accept equivalent fractions, decimals or percentages		
		50				
	(iii)	1	1			
			<u> </u>	,		
(a)	120,24, 20	1, 1, 1			
(b)	7 correctly plotted points f.t. correct curve	P3 C1	Deduct 1 for each error (±1mm) Must be a reasonable hyperbola		
(c))	1.6 to 1.8	1	Accept f.t.		
(d)	120,0	2			
(e))	Straight line through 4 points	L2	L1 if short or not ruled SC1 for √ if all straight lines		
(f))	(1.2 – 1.4, 92 – 96) (4.6 – 4.8, 24 - 26)	1	} Accept f.t.		
(g)	-20	2	SC1 for 20 or M1 for rise/run seen (numerical attempt)		

		7
Page 2	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Page 2	Mark Sche		Syllabus 2003 0580/0581
	IOOOL EXAMINATION	5 - 30NL	2505 0500/0501
(a) (i)	175 cents	1	Syllabus 2003 0580/0581 OFFICE
(ii)	25b cents	1	
(iii)	\$1.75	1 or √	
(iv)	$\$\frac{b}{4} \text{ (allow } \frac{25b}{100} \text{) (0.25b)}$	1 or √	If involves b
(b) (i)	$\frac{T}{n}$	1	
(ii)	The cost of one bar	1	
(c) (i)	4.5(0)	1	
(ii)	4.2(0)	2	M1 for (36 – 6.60)/7
(iii)	$\frac{y}{x}$	1	
(iv)	$\frac{y-7}{x-1}$	2	B1 for <i>y</i> – 7 or <i>x</i> – 1 seen
			1:
(a) (i)	P with vertices (4, 11), (2, 11), (2, 12)	2	SC1 if translated by $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ etc.
(ii)	Q with vertices (9, 7), (11, 7), (11, 8)	2	SC1 if reflected in $y = 8$ or $\sqrt{\text{from } P}$
(iii)	R with vertices (7, 7), (7, 5), (6, 5)	2	SC1 if 90° clockwise from <i>A</i> or $\sqrt{\text{from }}Q$
(iv)	S with vertices (7, 7), (3, 7), (3, 9)	2	SC1 if different scale factor about <i>A</i> or enlargement of triangle <i>T</i> s.f. 2 about <i>B</i> or <i>C</i>
(b) (i)	Translation (3)	1	
	(-4)	1	
(ii)	Enlargement Scale factor 1/2 centre A	1 1 1	
(c) (i)	90° (anti-clockwise)	1	Accept 270° clockwise
(ii)	(3, 3)	2	B1 for 1 correct

		Way.
Page 3	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Р	age 3	Mark Sch IGCSE EXAMINATIO		Syllabus 2003 0580/0581
		IGCSE EXAMINATION	13 – JUNE	2003 0560/0561
5	(a) (i)	Accurate and with arcs	2	B1 without arcs or inaccurate
	(ii)	Accurate quarter-circle r = 5	2	Syllabus 2003 0580/0581 B1 without arcs or inaccurate SC1 for r > 4.8 or < 5.2 with compass or correct r but freehand If convinced
	(b)	Correct region shaded	1 or √	If convinced
	(c) (i)	45° correct 12cm correct	1 1	± 2° ± 1mm
	(ii)	Reasonable tangent	1	Must be ruled ±5°
	(iii)	6.8 to 7.2	1	Accept f.t. ±0.1
				9
6	(a)	3 x 1 x 1.5 + 9 x 1 o.e.	2	M1 for appropriate strategy M1 (dep.) for correct numbers used
	(b)	3780	3	M1 for volume is area x length, 13.5 x 2.8 or 37.8 B1 for 280 seen
	(c) (i)	1.92	2	M1 for 2 x 1.2 x 0.8
	(ii)	1 920 000 f.t.	2	M1 for (their) (i) x 10 ⁶ or 200 x 120 x 80
	(iii)	507 f.t.	2	M1 for (c) (ii) ÷ (b) or 507· or 508
	(d)	One vertical line drawn	1	Within \pm 0.2cm of the centre
	(e)	(order) 1 or no symmetry	1	
				13
7	(a) (i)	84°	1	
	(ii)	22°	1	
	(b)	11	1	Accept 10.8 → 11, 10min 48sec → 11min
	(c)	16°	1	
	(d) (i)	32, (16), 8, 4	3	B1 for each
	(ii)	Halving o.e.	1	
	(e)	20°	1	Allow answer >20 and <22

Page 4	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Page 4	Mark Schei		Syllab 2003 0580/05	us 73
	IOOOE EXAMINATION	<u> </u>	2003 0300/00	A CO
3 (a)	3 new lines from the vertex to the base	2		WANN, PARACA
(b)	6, 7, <i>n</i> + 2	3	B1 for each	
(c)	15, 21, 55	3	B1 for each	
(d)	12	2	SC1 for 10 or 11	

June 2003

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

Page 1	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Page 1 Mark Scheme IGCSE EXAMINATIONS – .			JUNE 20		Syllabus 580/0581
	Marks in bracke	ts are totals for q	uestions (or part question	Syllabus 580/0581 Adda ss.
(a)	(\$) 3490		B1 (1)		
(b) 1	16n + 1570 = 4018 n = 153	o.e. c.a.o.	M1 A1 (2)	ww2	
`´ 1	x + y = 319 10x + 16y = 3784 Correct method x = 220 y = 99	o.e. o.e. s.o.i.	B1 B1 M1	Condone ard on wrong eq coefficients or 220 \$10 t	ickets kets (ww Correct
(d) ().85 × \$16 (\$)13.6(0)	o.e. c.a.o.	M1 A1 (2)	[\$16 – 0,15 ww2	× \$16]
	100 × \$10 125 (\$)8	o.e.	M1 A1 (2)	ww2	
		TOTAL	12		
	$120^2 = 77^2 + 55^2 - 2.5$ $\cos x = \frac{77^2 + 55^2 - 12}{2.55.77}$		M1 M1	Implied by n	ext line
	or $-\frac{5446}{8470} = \cos x = -0$ x = 130(.0)	.64(29752) s.o.i. (-0.643)	A1 A1 (4)	rounds to 13	orrect answer which 80° ng⇒M0. ww⇒SC2
(b) s	$\sin y = \frac{55 \sin 45^{\circ}}{60}$		M2	If not scored correct impl	l, allow M1 for icit eqtn
S	sin y = 0.648 (1812) y = 40.4	s.o.i.	A1 A1 (4)	some workir Accept mor	e accuracy but not (40.39° – 40.41°;
	i) 225° ii)* 275°		B2 B2 √ (4)	answer 222- √ 405° – the	hod seen <u>OR</u> -224°, allow Sc1 ir <i>x</i> (provided < er 291-293°, allow
		TOTAL			

			· · ·	
Page 2	Mark Scheme	Syllabus	.0	-
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581	200	

				Syllabus	
<u> </u>	Page 2		Mark Scheme IGCSE EXAMINATIONS – JUNE 2003		
<u></u>		IGCSE EXAMINATIONS -	JUNE ZU	0580/0581	
	Τ		T	SIM	
3	(a)		'	Tid.	
		0.35	B1	Accept percentages or fractions	
			54	but not ratios	
		0.6	B1	Syllabus 03 0580/0581 Accept percentages or fractions but not ratios	
			1		
		0.55	B1 (3)		
	(b)	(i) 0.4 × 0.65 <u>ONLY</u>	M1		
	(-,	0.26 c.a.o.	A1	www2	
		(ii)* Either	N 4 4		
		$0.4 \times 0.35 \sqrt{\text{ or } 0.6} \sqrt{\times 0.45}$	M1	Accepting their √ values for M marks	
		$0.4 \times 0.35 \sqrt{+0.6} \times 0.45 \text{ ONLY}$	M1		
		0.41 c.a.o.	A1	www3	
		(iii)* Either 1 – ($.6\sqrt{\times}.55\sqrt{)}$) or .26 + $.14\sqrt{+.27}$	M1		
		0.67 c.a.o.	A1 (7)	www2	
	اللل		<u> </u>		
	(c)	(i) 18 c.a.o. (ii) 12 ÷ (his 18 + 6) o.e.	B1 M1		
		(ii) 12 ÷ (fils 18 + 6) o.e. 30 c.a.o.	A1 (3)	SC1 for 34.3 after 18 in (c) (i)	
			, ,	, , , ,	
_	(d)	(i) 22.5	B1	Accept 22min 30sec	
		(ii)* Realises probability "STOP. STOP"	M1 dep.	Implied by correct answer after correct work. Dep. On 18 and	
			· ,	22.5 (approx.)	
		0.33	A1√	$\sqrt{1 - \text{their (b) (iii)}}$ or (their 0.6) ×	
		1	(3)	(their 0.55)	
		TOTAL	16		
4	(2)	Scalos correct	Q1	4 - 4 - 4 - 4 - 9 - 4 - 9	
4	(a)	Scales correct 9 points correctly plotted (1mm)	S1 P3	-4 ≤ x ≤ 4 and -8 ≤ y ≤ 8 Allow P2 for 7 or 8 correct, P1	
		. , , ,		for 5 or 6 correct	
		Reasonable curve through 9 points	C1√	√ provided shape maintained,	
		1	(5)	curvature OK and not ruled	
	(b)	$-3.6 \le x \le -3.3, x = 0, 3.3 \le x \le $	B2 (2)	Allow B1 for 1 correct non-zero	
		3.6	'	solution; condone (-3.5, 0)	
		1	'	(answers must be in range <u>and</u> correct for their graph)	
	<u> </u>		<u> </u>		
	(c)	Line from (-4, -3) to (4, 5), and ruled	B2 (2)	If B0, allow B1 for gradient 1 or	
		rulea	'	intercept 1 on single line	
	(d)	g(1) = 2	B1	Not (1, 2)	
		fg(1) = -8	B1 B1		
		$g^{-1}(4) = 3$ 3.75 $\leq x \leq 3.9$	B1 (4)	Lost if <i>y</i> -coordinate given.	
		0.10 3 % 3 5 5		Answer must be OK for their	
	<u> </u>			graph	

Page 3 Mark Scheme Syllabus			www.
LOCGE EVAMINATIONS HINE 2002 0500/0504	Page 3	Mark Scheme	Syllabus
IGCSE EXAMINATIONS – JUNE 2003 0580/0581		IGCSE EXAMINATIONS – JUNE 2003	0580/0581

	Page	3 Mark Scheme		Syllabus
rage		IGCSE EXAMINATIONS –	03 0580/0581 2	
1000E EXAMINATIONS —				ocamb.
(e)		Tangent drawn at x = 3 on curve Vert./Horiz. using scale Answer in range 5-10 and OK for theirs	B1 M1 A1 (3)	Syllabus 03 0580/0581 Not chord or daylight Dep. on reasonable approx to tangent used at $x = 3$ (N.B. Gradient = 4.5 + y-value of tangent at $x = 4$)
		TOTAL	40	,
		TOTAL	16	
5	(a)	½ 10.10.sin60° o.e.	M1	Any complete method including $\sqrt{15.5.5.5}$
		43.3 cm ² or 25 $\sqrt{3}$	A1 (2)	ww2
	(b)	$2\pi r = 10$ s.o.i. $r = 1.59 \text{ (15494cm)}$	M1 A1 (2)	Accept $\pi D = 10$ ww2
	(c)	(i) Tetrahedron or Triangular Pyramid 4 (his (a)) * 173(.2cm²) or 100√3 (ii) Cylinder Uses π (any r)²×10 ONLY Uses π (his (b))²×10 Correct or √ in range 79.35-79.65cm³ (iii) Cone h 10 r Appreciates hypotenuse = 10	B1 M1 √A1 (3) B1 M1 dep. A1 (4) B1	If not his (a) then correct Δ area method needed $\sqrt{4}$ (a) to 3s.f. Accept circular (based) prism Not $2\pi r^2 10$ or any other modifications Implies M2 Accept circular/round (based) pyramid e.g. right-angled Δ drawn or cos $x = \frac{\cdots}{10}$
		$h = \sqrt{10^2 - (his(b))^2}$	M1	10
		9.87 (25362cm)	A1 (4)	
	TOTAL		15	
6	(a)	$2x(x + 4)(x + 1) \text{ (cm}^3)$ $2x^3 + 10x^2 + 8x \text{ (cm}^3)$	B1 B1 (2)	Must see this. Ignore further correct work.

Page 4	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

www.							
Page 4 Mark Scheme			Syllabus 0580/0581				
IGCSE EXAMINATIONS – JUNE 2003 0580/0581							
(b)	2x - 2, x + 2, x	B3	B1 each correct answer, any order but in this form				
	Internal volume = $2x^3 + 2x^2 - 4x$ Wood = his (a) – his(Int. Vol.) Correctly simplifies to $8x^2 + 12x$	B1 M1 A1 (6)	Syllabus 03 0580/0581 B1 each correct answer, any order but in this form (Both could be wrong) No errors				
(c)	(i) $8x^2 + 12x = 1980$ $2x^2 + 3x - 495 = 0$	B1 (1)	No error seen. Needs = 0				
	$\frac{p \pm \sqrt{q}}{r} \text{ form} \Rightarrow p = -3 \text{ and } r = 4 \text{ or}$						
	2×2 ↓	B1	Alt. method B2 $(x-15)(2x+33)$ or SC1 for sign error(s) in brackets				
$\Rightarrow q = 3^2 - 4.2 - 495$		B1	Or $q = 3969$ or $\sqrt{q} = 63$. Allow				
		for $p \mp \frac{\sqrt{q}}{r}$					
	$\Rightarrow x = 15$ www	B1	If factorising method used, answers only score if correct and from correct bracket				
	$\Rightarrow x = -16.5 \text{ or } -\frac{33}{2} \text{ www}$	B1 (4)					
	(ii) Uses +ve answer	B1	Rejects –ve solution explicitly or implicitly				
	* 30 by 19 by 16	√B1 (2)	$\sqrt{2}$ (his), (his) + 4, (his) +1				
	TOTAL	15					
(a)							
(-)	(i) $\overrightarrow{OS} = 3a$ www	B1					
	(ii) $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ www	B1					
	(iii) $\overrightarrow{CD} = \mathbf{a}$ www	B1					
	(iv) $\overrightarrow{OR} = 2a + 2b$ www	B2	If B0, allow SC1 for correct but unsimplified seen				
	(v) $\overrightarrow{CF} = 2a - 2b$ www	B2 (7)	If B0, allow SC1 for correct but unsimplified seen				
(b)	(i) $ b = 5$ (ii) $ a - b = 5$ www	B1 B1 (2)					
	(c)	IBCSE EXAMINATIONS – IBCSE EXAMINATIONS – Internal volume = $2x^3 + 2x^2 - 4x$ Wood = his (a) – his(Int. Vol.) Correctly simplifies to $8x^2 + 12x$ (c) (i) $8x^2 + 12x = 1980$ $2x^2 + 3x - 495 = 0$ $\frac{p \pm \sqrt{q}}{r} \text{ form} \Rightarrow p = -3 \text{ and } r = 4 \text{ or } 2 \times 2$ $\Rightarrow q = 3^2 - 4.2 - 495$ $\Rightarrow x = 15 \qquad \text{www}$ $\Rightarrow x = -16.5 \text{ or } -\frac{33}{2} \qquad \text{www}$ (ii) Uses +ve answer * 30 by 19 by 16 **TOTAL* (a) (i) $\overrightarrow{OS} = 3a \qquad \text{www}$ (ii) $\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \qquad \text{www}$ (iii) $\overrightarrow{CD} = \mathbf{a} \qquad \text{www}$ (iv) $\overrightarrow{OR} = 2\mathbf{a} + 2\mathbf{b} \qquad \text{www}$ (v) $\overrightarrow{CF} = 2\mathbf{a} - 2\mathbf{b} \qquad \text{www}$	IGCSE EXAMINATIONS - JUNE 200 Internal volume = $2x^3 + 2x^2 - 4x$ B1 M1 M1 M1 M1 M1 M1 M1				

		May
Page 5	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581
		0/2

				32
	Page			Syllabus
		IGCSE EXAMINATIONS –	JUNE 20	03 0580/0581
				all
	(c)	(i) Enlargement, S.F. 3, Centre 0	B2	Allow SC1 for Enlargement o (S.F. 3 <u>and</u> Centre 0)
		(ii) Reflection In line CF o.e.	M1 A1 (4)	Syllabus 03 0580/0581 Allow SC1 for Enlargement of (S.F. 3 and Centre 0) SC1 for 'Mirrored in CF' o.e.
	(d)	(i) 6 c.a.o.	B1	
		(ii) 60°	B1 (2)	
		TOTAL	15	
8	(a)	(i) \$60-80 (ii) Midpoints 10, 30, 50, 70, 90 + 120	B1 M1	Needs at least 4 correct s.o.i.
		Σ fx attempted (12880)	M1*	Dep. on previous M1 or their midpoints $\pm~0.5$
		$\Sigma fx \div 200$	M1	Dep. on M1*
		Final answer \$64.40 c.a.o.	A1 (5)	Needs 2 d.p., www4 (64.4⇒M3 AO)
	(b)	(i) (≤)20, (≤)40, (≤)60, (≤)80, (≤)100, (≤)140	B1	Not for $\frac{20-40}{42}$ type
		10, 42, 90, 144, 180, 200 (ii) Scales correct and labelled or used to 140 and 200	B1 S1	Vert. 20cm ≡ 200 and Horiz. ≡ 14cm 140. Reversed axes SO
		6 plots correct (20, 10)→(140, 200)	P2	P1 for 4 or 5 correct. 1mm accuracy
		Graph from (0, 0), line or curve	C1 (6)	Through all 6 points. Dep. on P1
	(c)	(i) Median (\$)63-64	B1	All answers in (c) must also be correct for their graph (1mm)
		(ii) U.Q. (\$)82-84 (iii) IQR (\$)38-41	B1 B1	g. ap ()
		(iv) Using \$75 reading on Cum. Freq. Graph –	M1	e.g. answer 130 implies this
		67 or 68 or 69 or 70 or 71 or 72	A1 (5)	Must be integer answer and OK for their graph
		TOTAL	16	
9	(a)	Diagram 1 ⇒ 25 % c.a.o.	B1	For whole section reversed (a) or (b), treat as MR-1 per section
		Diagram 2⇒ 12 ½% o.e.	B2	For Diagrams 2-4 accept non% equivalents
		Diagram 3⇒ 37½ % o.e.	B2	Also in each case if 2 not scored, allow SC1 if correct idea seen (e.g. ½h ÷4h for Diagram 2)
		Diagram 4⇒ 60 % o.e.	B2 (7)	

Page 6	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – JUNE 2003	0580/0581

Page	6 M IGCSE EXAM	ark Scheme INATIONS –	JUNE 20	In Diagrams 6 and 7, accept non-fraction equivalents. If B0, allow SC1 for $(\pi)5^2$ seen	No.
(b)	Diagram 5⇒1/9 o.e. fra	ction	B1		100
	Diagram 6 ⇒ 1/25	o.e.	B2	In Diagrams 6 and 7, accept non-fraction equivalents. If B0, allow SC1 for $(\pi)5^2$ seen	Se. COM
	Diagram 7⇒ 5/9	o.e.	B3 (6)	If B0, allow SC1 for $(k\pi)2^2$ and SC1 for $(k\pi)3^2$ seen $(k=1)$ or $x/360$ N.B. 4π must be from π 2 and not 2π 2	
		TOTAL	13		
	FIN	AL TOTAL	130		

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the June 2003 examination.

	maximum	minimum mark required for grade:				
	mark available	А	С	E	F	
Component 1	56	-	40	25	18	
Component 2	70	59	40	28	-	
Component 3	104	-	73	50	41	
Component 4	130	93	56	32	-	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.