

International General Certificate of Secondary Education

MARK SCHEME for the June 2005 question paper

0580/0581 MATHEMATICS

www.papacambridge.com

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initialy instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

r ade thresholds camination.	for Syllabus	0580/0581	(Mathematic	s) in the J	une 20	nbridge.com
amination.						Tig
	maximum	m	inimum mark re	equired for gra	ide:	Tidde.c.
	maximum mark available	A	inimum mark re	equired for gra	ide: F	Stidde com

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

TYPES OF MARK

www.papacambridge.com Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method. •
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

- Anything rounding to a.r.t.
- Benefit of the doubt has been given to the candidate b.o.d.
- c.a.o. Correct answer **only** (i.e. no 'follow through')
- Each error or omission e.e.o.
- Follow through f.t
- Ignore subsequent working i.s.w.
- o.e. Or equivalent
- Special case SC
- Seen or implied s.o.i.
- Without working ww
- Without wrong working www
 - $\sqrt{}$ Work followed through after an error: no further error made

June 2005

IGCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

						MAN AND
	Pa	age 1		Scheme JUNE 200	5	Syllabus 0580/0581
1	(a)	$1.33 \times \frac{5}{7}$		0.e	M1	Implied by figures 95 in answer
		7 950 (kg)		c.a.o.	A2	A1 for figs 95
	(b)	$765 \times \frac{9}{(9+)}$	- 8)	o.e.	M1	Syllabus 0580/0581 Implied by figures 95 in answer A1 for figs 95
		(\$) 405		c.a.o.	A1	
	(c)	<u>their (b)</u> their (a)			M1	
		(\$) 0.43 or	(\$) 0.426		A1 √	f.t . <u>their (b)</u> must be in dollars for A mark their (a)
	(d)(i)	0.35 x <u>60</u> 100		0.e	M1	
		(\$) 0.21		c.a.o.	A1	
	(ii)	0.35 x <u>100</u> 125		o.e	M1	
		(\$) 0.28		c.a.o	A1	0.26(25) is M0
					11	
2	(a)	AB = 12cm	l		B1	All measurements ±2 mm or ±2 °
	(b)	Perp. Bised	ctor with arcs-2 sets fo	or AB	B2 √	SC1 if accurate without arcs
	(c)	Accurate tr	apezium	c.a.o.	B2	dep. on B1 in (a) <u>and</u> at least SC1 in (b) . SC1 for DC = 9cm and parallel to AB
((d)	Strict ft of t	heir angle ABC (±2 °)		В1√	
(e)	(tan B =)	<u>7</u> 1.5		B1	or (sinB=) $\frac{7}{\sqrt{7^2+1.5^2}}$ or (cosB=) $\frac{1.5}{\sqrt{7^2+1.5^2}}$
		77.9	final answer		B1	Indep
(f)(i)	Arc, centre	D, radius 5 cm		В1√	No gaps in the trapezium, but condone extra
	(ii)	Bisector of	their angle D with arc	S	B2 √	SC1 if accurate without arcs
	(iii)	Correct sha	ading	c.a.o.	B1	dep. on B1 in (i) <u>and</u> at least SC1 in (ii) and a correct trapezium
					12	

Page 2 Mark Scheme Syllabus			122
	Page 2	Mark Scheme	Syllabus
IGCSE – JUNE 2005 0580/0581		IGCSE – JUNE 2005	0580/0581

				12.
3				If choice of transformations in (i), (i), (i), then lose the 1 st two B marks in each e.g. 6 left and 1 up. Condone -6 1
(a)(i)	Translation (only) (T)		B1	e.g. e loit and i up. Condone e i
	[-6] 1]	0.e.	B1	
(ii)	Reflection (only) (M) in $y = -x$	o.e.	B1 B1	must be equation
(iii)	Enlargement (only) (E) Centre (0,6) Scale factor 3 o.e. seen		B1 B1 B1	
(iv)	Shear (H) <i>x</i> -axis (<i>y</i> = 0) invariant (Shear) factor 0.5 o.e. seen		B1 B1 B1	
(b)(i)	$ \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} $	o.e.	B2	SC1 for a correct column
(ii)	(1 0.5) (0 1)	o.e.	B2	SC1 for a correct column Allow embedded matrices in both answers
			14	
(a)	p = 0.25 q = 1 r = 8		B1 B1 B1	Must be seen. No feedback from graph. If not labelled, must be in order
(b)	Scales correct Their 7 points plotted correctly (with 1mm and in the correct square) Smooth curve through all 7 points (1mm)	nin	S1 P3√ C1√	 x from -2 to 4. y to accommodate their values. ft P2 for 6 points correct. P1 for 5 points correct. ft provided correct shape maintained
(c)	2.75 to 2.85		B1	
(d)	0		B1	
(e)	Tangent drawn at $x = 1.5$ Uses <u>increase in y</u> (using scale) increase in x		T1 M1	Not a chord and no daylight Dep on T1 or a near miss (not chord or clearly drawn at $x = 1$ or $x = 2$)
	1.7 to 2.2		A1	If correct method seen, condone any answer in range, even with a slight slip
(f)	Correct ruled straight line (complete for range 0 to 4)	e	B2	SC1 for freehand complete line or any ruled line of gradient 2 or <i>y</i> -intercept of 1 (not $y=1$)
(g)	Correct for theirs(±0.05) dep. on at SC1 in (f)	least	B2 √	SC1 if <i>y</i> -coordinate also given or <i>x</i> =0 also given (or both)
			17	

2.			
Q.	Syllabus	Mark Scheme	Page 3
Sp.	0580/0581	IGCSE – JUNE 2005	-
9		•	•

					4737
P	age 3	Mark S	Scheme		Syllabus
		IGCSE – J	JUNE 200)5	0580/0581
		C			Canny
5 (a)(i)	c-d	final answer	o.e.	B1	916
(ii)		<u>or</u> OC + their CD + DE final answer	o.e. o.e.	M1 A1	Syllabus 0580/0581 Must be seen if answer incorrect
(iii)	OA + AB 1.5c – d	or OC + CB or OC + EO final answer	0.e. 0.e.	M1 A1	Must be seen if answer incorrect
(b)(i)	120			B1	If 90 then only method marks in (iv) available If 60 only method marks in (ii) and (iv) available
(ii)	0.5 × 8 × art 27.7		o.e. www	M1 A1	e.g. perp. onto AC, then $8\sin 60 \times 8\cos 60$ ($16\sqrt{3}$)
(iii)		2 × 8 × 8 cos120 oot of correct combinatio	n	M1 M1	** Dep on first M1. Errors must be due to slips, not incorrect combination
	(√192 c	or $13.8\left(\frac{5}{6}\right)$)			
	art 13.9 (cm)(13.856406)		A1	(8√3) ** Alternative methods e.g. perp onto AC, then 8sin60 M1 ×2 M1 Sine Rule Implicit M1 Explicit M1
(iv)	· · ·) + OACD < 2 + their (iii) × 8 57 (cm²)	o.e. c.a.o.	M1 M1 A1	Alt meth. 6 × ABX (X is centre) <u>or</u> 6 × ABC <u>etc.</u> 6 × [0.5 × 8 × 8 sin60] <u>or</u> their (ii) × 6 <u>etc.</u> (96 $\sqrt{3}$)
				14	

_							mm		
-	Pa	age 4		Mark Scheme) <i>E</i>		Syllabus	an -	
L			<u> </u>	GCSE – JUNE 20	19		0580/0581	NaCan.	
6	(a)	-	l.= $\pi \times 0.35^2 \times$ ne = $\pi \times \frac{0.35^2}{3}$	· · ·	M1 M1	Use of ra	<u>RADIUS = 0.7</u> dius = 0.7 loses all ma t they can revert to 0.3		idge.con
		a.r.t	. 6.54 (cm ³)		A1		use of 0.7 after 0.35 marks gained using 0	penalty 2 .7	Ň
(b)(i)	4.2 1.4			B1 B1	8.4 2.8			B1 81
	(ii)	18 × theii 106 (cm ³	r 4.2 × their 1.4)	(105.84)	M1 A1		r 8.4 × their 2.8) (423.36)		M1 A1
	(iii)	12 × <u>thei</u> their (b 74.(0) to	,, ,	c.a.o.	M1 A1	<u>12 × their</u> their (74.1 to 74			M1 A1
(c	:)(i)	(<i>l</i> =) √(1. 1.54 (cm)	.5 ² + 0.35 ²))		M1 A1	(<i>l</i> =) √(1. 1.66 (cm)	.5 ² + 0.7 ²)		M1 A1
	(ii)	Cylinder	$\pi \times 0.35^{2}$ $= 2 \times \pi \times 0.35 \times 0.3$		M1 M1 M1	-	$\pi \times 0.7^2$ = 2 × $\pi \times 0.7 \times 16.5$ $\pi \times 0.7 \times \text{their (c)(i)}$		M1 M1 M1
				a.r.t. 1.69) 0.539 <i>π</i> c.a.o.	B2 A1	(a.r.t. 1.5 0.49	rrect areas 4 72.5 to 72.6 a.r. π 23.1 π 1 7.8 (cm ²)	.t. 3.65) .162 <i>π</i>	B2 A1
			~ /		17		· · /		

MMM. DabaCar Syllabus 0580/0581 Page 5 Mark Scheme **IGCSE – JUNE 2005**

7 (a)(i)	Median 46	.5		B1	
(ii)	IQR	9.5	www	B2	SC1 for 42 <u>or</u> 51.5 <u>seen</u> SC1 for 102 <u>seen</u>
(iii)	48			В2	SC1 for 102 seen
(b)(i)	<i>n</i> = 32			B1	
(ii)	10x32.5 + 1	, 37.5, 42.5, 47.5 7x37.5 + 33x42.5 2.5 + 16x57.5		M1 M1* M1 A1	At least 5 correct s.o.i. Dep on first M1 <u>or</u> midpoints ±0.5 Allow 1 more slip Dep on 2 nd M1*
(c)	Horizontal S	Scale correct		S1	Implied by correct use. <u>Ignore vertical</u> <u>scale</u>
		dths on their scal ock of correct wid		W 1√	no gaps
		cm		H1	For scale error double or half, award H1, H1, H1
		(3) or 7.2 cm 2 cm		H1 H1	for correct f.t heights After H0, SC1 for 3 <u>correct</u> frequency densities written or for heights 2.7cm, 7.1cm and 3.2cm drawn on doubled/ halved horizontal scale.
				15	
8 (a)	(x-3)(x-1)) [= 0]		M1	$\frac{4 \pm \sqrt{[(-4)^2 - 4.1.3]}}{2}$ or (x - 2 ²) = 1 or better
	1 and 3			A1	
(b)	$\frac{\text{Correct first}}{\frac{x+1}{2}}$	step of rearrange	ement o.e.	M1 A1	e.g. y + 1 = 2x or x + 1 = 2y or better not for x = ()
(c)	$\frac{x^2 - 6x + 4}{p \pm \sqrt{q}}$ with r	= 0 n <i>p</i> = 6 <u>and</u> <i>r</i> = 2		MA1 M1√	Can be implied by later work (method marks) f.t. if in the form $ax^2 + bx + c (= 0)$ with $a \neq 0$ [$(x-3)^2 - 5 = 0$ M1 then $x = (\pm)\sqrt{5} + 3$ M1 is the
	and	$q = (-6)^2 - 4.1.4$	o.e. or 20	M1√	equivalent for completing the square.] Indep.
	5.24	(c.a.o. www	A1	SC1 for both answers 'correct' but not to 2 dp
	0.76	(c.a.o. www		(5.236067977 , 0.763932022). Can be truncated or correctly rounded
(d)	29			B2	SC1 for [<i>f</i> (-2) =] 15 seen or 2 <i>x</i> ² -8 <i>x</i> +5 o.e seen
(e)	$(2x-1)^2-4$	4(2 <i>x</i> – 1) + 3		M1	
	$4x^2 - 12x + 3$	8 or correctly fac final answ		A2	After A0, SC1 for $4x^2 - 12x + 8$ seen
		inal ansv		14	

F	Page 6		ark Scheme SE – JUNE 200)5		Syllabus 0580/0581 13 13 13 13 13
9 (a)	$x + y \leq 1$	2	o.e	B1	<i>x</i> + <i>y</i> < 1	3 Ann
(b)	<i>y</i> ≥ 4		o.e.	B1	y > 3	Tidde
(c)	Scales co	orrect – full length		S1		·co
(d)	y = 4 rule 5x + 3y = (1 mm at	2 ruled and long end ed and long end 45 ruled and long end (9, 0) and (0, 15) if o d regions shaded	ough enough	L1 L1 B2 B2√	or broker SC1 for e SC1 for v f.t. from <u>r</u> comprom	en line $x + y = 13$ en line $y = 3$. F.t from $x \ge 4$ only in (b) either point correct wanted regions shaded <u>minor</u> slips in the lines that do not mise the shape and position of the or from $x \ge 4$ in (b) and $x = 4$ drawn
(e)	(n	5 mini <u>and</u> 5 super, 7 no extras) e as (6, 5) and (5, 7)		B3	SC1 for a	1 correct and no more than 1 wrong any point(s) in their region selected ed by 3 lines or 2 lines + 1 axis)
(f)(i)	(7, 4) or ((\$) 274 (\$) 260	6, 5)	s.o.i.	M1 A1 A1	If 0 score written o	ed, SC1 for evidence of 30 <i>x</i> + 16 <i>y</i> or used
(f)(ii)	(\$) 94		c.a.o.	B1		
				16		