UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Р	age 2	Mark Scheme: Teachers' version	Syllabus 0580, 0581
	-	IGCSE – May/June 2009	0580, 0581
Abbre	viations		Cambridge.c.
ao	correct answ	ver only	146
cso	correct solut	tion only	-0
lep	dependent		
ì	follow throu	igh after error	
SW		equent working	
be	or equivalen		
SC	Special Case		
www	without wro		

1 ()		DA	
1 (a)	(\$) 450	B2	M1 for $650 \div (9+4) \times 9$
			$(\div 14 \text{ does not imply } 9 + 4)$
(b) (i)	(\$) 120	B2	M1 for 0.8×150 o.e.
(ii)	(\$) 80 ft	B2 ft	M1 for $(150 - \text{their}(\mathbf{b})(\mathbf{i})) \div 0.375$ o.e.
			only if +ve. After M0, SC1 for answer 320
(c) (i)	(\$) 441	B2	M1 for 400×1.05^2 o.e. or for answer 41
(ii)			If use Simple Int in (i), M0, M0 in this
			part
	$\frac{1}{2}$ their ((i) - 400) ÷ 400 × 100 o.e.	M2	i.e. a full explicit method for r
	2		If M0,
			·
	5.125 or 5.13 or 5.12 c.a.o. www3	A1	M1 for $\frac{400 \times r \times 2}{100}$ = their (i) – 400
			100
			or their (i) $\div 400 \times 100$ then -100
			or $\frac{\text{their (i)} - 400}{400} \times 100$ (s.o.i. by 10.25)
			400 $\times 100$ (s.o.i. by 10.25)
			If still M0 , SC1 for answers 55.125 or
			55.12 or 55.13 or 55.1 or 0.05125 or
			0.0512 or 0.0513
			[11]

2 (a)	1	B1	
(b)	2.5 o.e.	B 1	
(c)	2.96 c.a.o.	B2	If B0, M1 for $15 \times 1 + 10 \times 2 + 7 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6$ (allow one slip) implied by 148 seen
	$60 \times 2.05 (-177)$	M1	Ignore subsequent rounding
(d)	60 × 2.95 (= 177) their 177 – their 148 (or 50 × their 2.96)	MI M1	Dependent on first M and <u>only if</u> positive or M1 for
	(Mean of new rolls =) 2.9 c.a.o. www3	A1	$\frac{\text{their } 148(50 \times \text{their } 2.96) + x(\text{or } 10x)}{60} = 2.95$
			then M1 for $x(\text{ or } 10x) = 60 \times 2.95 - \text{ their } 148$
			(or $50 \times$ their 2.96) and <u>only if</u> positive [7]

Page	e 3	Mark Scheme: Teachers' version			Syllabus Syllabus
		IGCSE – May/June 2	009		0580, 0581
3 (a)	(sin <i>P</i>)	$=\frac{48}{0.5\times10\times14}$ o.e. <u>fraction</u>	M2	Allow	Syllabuser0580, 0581900 $r 0.5 \times 10 \times 14 \sin P = 48$ 900 $0.5 \times 10 \times 14 \sin 43.3 = 48$ hfurther creditM1 for correct implicit statementependent on M2) for square root ofcombination (not negative)
	<i>P</i> = 43 .	29 cao $4^2 - 2 \times 10 \times 14\cos 43.3 \ (= 92.2)$	A1	200 110	
(b)		$4^2 - 2 \times 10 \times 14\cos 43.3 \ (= 92.2)$ ting square root	M2 M1	M1 (de correct	M1 for correct implicit statement ependent on M2) for square root of combination (not negative) os43.3 (11.64) implies M2M0
	(QR =)	9.6 (0) (9.60 to 9.603) c.a.o. ww2	A1		[7]
4 (a)	(AB =)	$\frac{250}{\sin 126} \times \sin 23$ (s.o.i by 120)	M2	M1 for	$r \frac{AB}{\sin 23} = \frac{250}{\sin 126}$ o.e. (implicit)
		20.7 to 121) (m) c.a.o. www3	A1		
(b) (i)	280		B1		
(ii)	(0)69	c.a.o.	B2	SC1 fo	for answer 249 [6]
5 (a) (i)	1535	75, -1.5	B1,B1,B1		
<u>3 (a) (i)</u> (ii)		ts plotted ft	P3 ft		or 10 or 11 points,
(11)	Curve shape of	through at least 10 points and correct over full domain eparate branches, one on each side of	C1	P1 ft fe	or 8 or 9 points f two branches joined
		neither in contact with <i>y</i> -axis	B 1	Indepe	endent
(b)		$x \le -1.1$ and $3.1 \le x \le 3.4$	B1,B1		Brd answer if curve cuts $y = 1$ again
(c) (i)		t ruled tangent at $x = 2$ or $x = -2$ ice of rise/run	M1 M1 A1	Depen gradier	enough to be able to find gradient dent – check their graph against nt of 1 – must be correct side of 1 agent drawn M0M0
(ii)	0.8 to 1	1.2 inc. or same answer as (i) ft	B1 ft		
(d) (i)		t ruled line to cut curve for all e intersections (at least 2)	B1	Within	$\frac{1}{2}$ square of (-1, 1) and (1, -1)
(ii)		-1.05, 1.05 to 1.3 inclusive	B1, B1		any extra answers
(e)	y = kx	with $k \ge \frac{1}{2}$ o.e. or $x = 0$	B2		allow SC1 for $y = kx$ with $k < \frac{1}{2}$ or x is stated [19]

		2.
Page 4	Mark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE – May/June 2009	0580, 0581
	·	

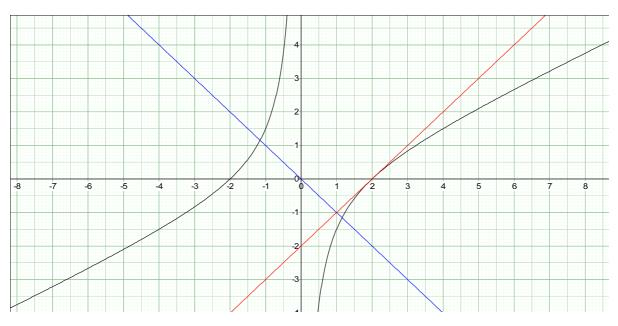
Page 4 Mark Scheme: Teachers'				Syllabus Syllabus	
		IGCSE – May/June 20	009		0580, 0581
					Syllabus 0580, 0581 r any algebraic use of half ba tets may be implied later) e first line first line, then M0 dent on M1A1. Fully established –
6 (a) (i)	0.5 [(<i>x</i>	$(+ 6) + (x + 2)] \times (x + 1) (= 40)$ or	M1A1	M1 for	r any algebraic use of half ba
	better			height	
				\ \	tets may be implied later)
		(+8)(x+1) (=40) o.e.		2	e first line
	$0.5(2x^2)$	+10x + 8) (= 40) o.e.			first line, then M0
		+4=40 o.e.	E 1	-	5
	$x^2 + 5x$	-36 = 0			ors throughout and at least 2 steps,
(;;)	0.4		B1,B1		th 40 or 80, after first line SC1 for +9 and -4
(ii) (iii)	-9, 4) $(\text{their } x + 1)^2 + (\text{their } x + 2)^2$	<u>ы,ы</u> М1		$\frac{5C1}{107+9}$ and -4
(III)		(11011 x + 1) + (11011 x + 2) (11011 x + 2) (11011 x + 2)	A1		any extra solutions
	(DC -	108 ± 5 $0 \times 12 \pm 5$ 565		Ignore any extra solutions	
(b) (i)	$9\frac{5}{12}$ c	or $\frac{108+5}{12}$ or $\frac{9 \times 12+5}{12}$ or $\frac{565}{60}$	E1		be fractional form
					ne $113/12 \times 60 = 565;$
	or $\frac{9 \times 6}{-1}$	$\frac{60+25}{60}$ seen			+25 = 565
	01	60		Not for	r decimals
(ii)	3 <i>y</i> +2	or $\frac{y+4}{2}$ o.e.	B 1		
(11)	3	or $\frac{1}{2}$ o.e.	D 1		
	2(3y +	(2) $3(y+4)$		6 <i>v</i>	+4 3v + 12
	6	$\frac{(2)}{(2)} + \frac{3(y+4)}{6}$ o.e.	B 1	or $\frac{1}{6}$	$\frac{+4}{6} + \frac{3y+12}{6}$ o.e.
(iii)	$\frac{2(y)}{10}$	$\frac{116}{12} = \frac{113}{12}$ o.e.	M1		eans with common denominator or
			4.1	better	1 2 0)
(!)	y = 4.5	$\frac{\text{c.a.o.} \text{www2}}{\text{dist} =) (3 \times \text{their } y) + 2 + (\text{their } y) + 4}$	A1 M1		and error scores 2 or 0.)
(iv)		$dist = (3 \times their y) + 2 + (their y) + 4$	M1	(= 24)	
	o.e.	their 24			
	(Avera	ge speed =) $\frac{\text{their } 24}{9\frac{5}{12}}$ o.e.	M1		dent) Must be km divided by hours
					r full method
		m/h) (2.548 – 2.549) c.a.o. www 3	A1	Accept	t fractions in range
					[15]

		www.
Page 5	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0580, 0581

Page				Syllabus er	
		IGCSE – May/June 2009			0580, 0581
					2
7 (a)	$250x^2 =$	= 4840 o.e.	M1	Allow	M1 for $250 \times 4.4^2 = 4840$
	$x^2 = 19$	4.36 or $(x =) \sqrt{4840 \div 250} (= 4.4)$	E1	Then E	E1 for $250 \times 19.36 = 4840$
(b)	42.6 (k	g) cao (42.592 or 42.59)	B2		or figures 426 or 4259
(c)	26.4 (c	m) c.a.o.	B2	88 ÷ 4. bars hi or 88 <i>h</i>	Syllabus 0580, 0581 M1 for $250 \times 4.4^2 = 4840$ E1 for $250 \times 19.36 = 4840$ or figures 426 or 4259 M1 for any of following $.4 = 20$ and $120 \div 20 = 6$ (accept 6 gh o.e.) $= 4.4^2 \times 120$ $\times 88 \times h = 120 \times 4840$
(d) (i)	4840÷	4200 (implied by 1.15(2))	M1	4200 ×	$\frac{4}{3}\pi r^3 = 4840$
	$\div \frac{4}{3}\pi$	(implied by 0.274 to 0.276)	M1	$(r^3 =)$	$4840 \div (4200 \times \frac{4}{3}\pi)$
	-	en or implied by correct answer to han 2 dp)	M1 dep	∛ Th	ird M dependent on M1M1
	0.649 -		A1	Must b	be 3dp or better
(ii)	· · · ·	5.306 - 5.31) (cm ²)	B 1		
(iii)		$\frac{00 \times \text{their (ii)}}{4^2 + 4 \times 4.4 \times 250} \times 100$	M3	and M	M1 for 4200 × their (ii) (22299) I1 (independent) for correct method face area of solid cuboid (4438.72)
	501.9 -	- 503 (%) c.a.o. www4	A1		[15]
8				If using parts (Use of Correc For me	ghout the question ratios score zero. g decimals, 2 s.f. correct answers to c) and (d) – penalty of 1 once words e.g. 1 in 400 or 1 out of 400, et answers – penalty of one ethod marks only accept pilities p and q between 0 and 1
(a)	$p = \frac{1}{20}$	$, q = \frac{19}{20}$ o.e.	B1		be on diagram
(b) (i)	$\frac{1}{400}$	0.e. c.a.o.	B2	0.0025	allow M1 for $(\text{their } p)^2$ o.e.
(ii)	$\frac{38}{400}$	0.e. c.a.o.	B2	0.095 a	allow M1 for 2 (their p)(their q) o.e.
(c)	<u>38</u> 8000	o.e. c.a.o.	B2	o.e.	75 allow M1 for $2(\text{their } p)^2$ (their q)
(d)	their A	$\mathbf{v}(\mathbf{i}) + thoir (\mathbf{a})$	M1	includi	ing their (ii) \times their p
(d)	<u>,</u>	b)(i) + their (c) o.e. c.a.o.	A1	0.0072	5
(e)		\mathbf{l} × 1000 = 7.25 o.e. ft	B1 ft		t 7 or 8 or an equivalent integer ft [10]

er

Page 6	Mark Scheme: Teachers' version	
	IGCSE – May/June 2009	


			Syllabus 0580, 0581 If B0, B1 for 63 seen in working space
Page	6 Mark Scheme: Teachers	s' version	Syllabus er
	IGCSE – May/June	2009	0580, 0581
			Can
9 (a) (i)	174 to 174.25 (cm) c.a.o.	B1	10,
(ii)	167 (cm) c.a.o.	B1	36
(iii)	12 (cm) c.a.o.	B1	20
(iv)	37 c.a.o.	B2	If B0 , B1 for 63 seen in working space
(b) (i)	10, 25	B 1	1
(ii)	155, 165, 175, 185	M1	s.o.i. allow 1 slip
	(their 10×155 + their $25 \times 165 + 47 \times 175$	M1	Use of $\Sigma f x$ where the x's are in/on their
	+ 18 × 185)		intervals (allow one more slip) (17 230)
	÷ 100	M1	(dependent on second M) ÷ 100
	172 or 172.3 (cm) c.a.o. www 4	A1	[10]

10 (a) (i)	-2,	B1	
(ii)	26,	B1	
(iii)	$\frac{1}{8}$ o.e.	B1	
(b)	$\frac{y+1}{2}(=x)$	M1	If switch x and y first then M1 for $x = 2y - 1$ or
	$(f^{-1}(x) =) \frac{x+1}{2}$ o.e. www2	A1	If use a diagram/chart then M1 for any evidence of $+1$ then result $\div 2$
(c)	$z = x^2 + 1$		
	$z - 1 = x^2$	M1	Correct rearrangement at any stage for <i>x</i> or x^2 .
	$(x =) \sqrt{z - 1}$ www2	M1	Correct sq root at any stage
(d)	$(2x-1)^2 + 1$	M1	Ignore +, – or \pm in front of $$
(u)	$(2x-1)^{2} + 1$ = 4x ² - 4x + 2 or 2(2x ² - 2x + 1) www 2	A1	Final answer but condone one minor factorising slip if first answer seen
(e)	9	B1	
(f)	$2(2x-1) + x^2 + 1 (= 0)$ or better	B1	
	$(x^{2} + 4x - 1 = 0)$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 4(1)(-1)}}{2 \times 1} $ ft	M1 M1	$\sqrt{4^2 - 4(1)(-1)}$ or better seen If in form $\frac{p + or - \sqrt{q}}{r}$ for -4 and 2×1
	2×1 (x =) -4.24, 0.24 c.a.o. www 4 (final answers)	A1,A1	or better F t their 1, 4 and -1 from quadratic equation seen After A0A0, SC1 for -4.2 or -4.235 or -4.236
	· · ·		and 0.2 or 0.235 or 0.236 The SC1's www imply the M marks
(g) (i) (ii)	Straight line with positive gradient and negative <i>y</i> -intercept U-shape Parabola	L1 C1	
	vertex on positive y-axis	V1	Dependent [18]

		222
Page 7	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0580, 0581

11 (a)	15, 21, 28, 36	B2	B1 for 3 correct Any two complete and correct stateme
(b) (i)	10 + 15 = 25, 15 + 21 = 36 etc	B1	Any two complete and correct stateme
(ii)	Square	B1	
(c) (i)	2	B 1	
(ii)	$\frac{4\times 5}{2} = 10 \text{o.e.}$	E1	
(iii)	16 290 c.a.o.	B1	
(d) (i)	$\frac{(n+1)(n+2)}{2} \text{ or } \frac{n^2 + 3n + 2}{2} \text{ seen}$ $\frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2} \text{ or } \frac{n^2 + n}{2} + \frac{n^2 + 3n + 2}{2}$ $\frac{(n+1)}{2}(n+n+2) \qquad \qquad \frac{2n^2 + 4n + 2}{2}$ $\frac{(n+1)(2n+2)}{2} \qquad \qquad n^2 + 2n + 1$ $\frac{(n+1)(2n+2)}{2} \qquad \qquad (n+1)^2$	M1 M1	Denominator could be their <i>k</i> May be implied by next line This line must be seen and at least one more step, without any error, to gain the E mark
	$\frac{2(n+1)(n+1)}{2} = (n+1)^2$	E1	Dependent on M1M1 . Fully established – no errors
(ii)	1711 and 1770 final answers c.a.o.	B2	SC1 for 59 or 58 or 1711 or 1770 seen [12]

Graph for Question 5

