UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

F	Page 2	Mark Scheme: Teachers' version	Syllabus 0580 Babac
		IGCSE – May/June 2011	0580
Abbre	eviations		Cambridge.co
cao	correct answe	er only	27:
cso	correct solution	on only	3
dep	dependent	-	
ft -	follow throug	gh after error	2
SW	ignore subsec	quent working	
be	or equivalent		
SC	Special Case		
www	without wron	g working	
art	anything rour	nding to	
soi	seen or implie	ed	

Qu.	Answers	Mark	Part Marks
1 (a)	 (i) 34.65 (ii) 41.58 (iii) 264 	1 2 3	M1 for 0.15×277.2 implied by 41.6 or 41.58 seen and not spoiled M2 for $277.2 \div (1 + 0.05)$ o.e. or M1 for recognition that $105(\%) = 277.20$
(b)	(i) 1000 (ii) 3650	2 2	M1 for 2200 ÷ (2 + 4 + 5) × 5 M1 for 2200 ÷ 44 × 73
2 (a)	(i) Image at $(4, -4)$, $(6, -4)$, $(6, -6)$,	2	SC1 for reflection in <i>y</i> -axis
	(2, -6) (ii) Image at $(-4, -4)$, $(-4, -6)$, $(-6, -6)$,	2 ft	SC1 ft if rotated 90° anti-clockwise about (0, 0)
	(-6, -2) (iii) Reflection y = -x	1 ft 1 ft	ft their Z (name of transformation) independent (full details)
(b)	(i) Image at (2, 2), (3, 2), (3, 3), (1, 3)	2	SC1 for enlargement s.f. 0.5 with correct orientation, different centre or $sf - 0.5$, centre (0, 0)
	(ii) $\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$ cao	2	B1 B1 each column
(c)	(i) Image at $(0, 4), (2, 4), (0, 6), (-4, 6)$	2	SC1 if 3 vertices correct
	(ii) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	2	SC1 for $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \neq 0$ but can be algebraic or
			numeric or for $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$

Page 3 Mark Scheme: Teach					Syllabus Syllabus	
	IGCSE – May/June 2011 0580					
3 (a)	$(x+5)^2-2$	$2x^2 = 1 \text{ oe}$	M1		Syllabus 0580 equation in the three parts, - 5) ² expanded	
	$(x+5)^2 = x^2 + 5x + 5x^2 + 5x + 5x^2 + 5x$	$x^2 + 10x + 25$ or $5x + 25$	B1			
	$x^{2} + 10x + 0 = x^{2} - 10$	$25 - 2x^2 = 1$ $0x - 24$	E1		reached without any errors or ter any previous line with $(x + 5)^2$	
(b)	12		3	from formula	2)(x + 2) or full correct expression a. or $(x+a)(x+b)$ and $ab = -24$ or	
				two roots from +ve root, if o	dependent on quadratic factors or m formula) for correct selection of nly one +ve. 2 and -2 scores M2 only	
(c)	(c) 53.1 to 53.2 www 3		3	method or M1 for tan leading to any be implicit ar out) (Implied to 63.44 or 62	an ⁻¹ $(\frac{1}{2})$ o.e. i.e. any complete $n = \frac{1}{2}$ o.e. i.e. any correct method y angle in diagram (expressions car nd bod which angle is being worked d by 26.56 to 26.57 or 26.6, 63.43 3.4, 126.8 to 126.9)	
4 (a)	$(\cos(A)) =$	$=\frac{6^2+8^2-9^2}{2.6.8}$	M2		thout working score 0 ct implicit equation with cos <i>A</i>	
- ()	78.58		A2		9 to 0.198 (this implies M2)	
(b)	(i) 78.6		1	Allow 78.58.		
(~)	. /	$\frac{4.5}{in(78.6)}$ oe	M2	(M1 for sin(7		
		111(78.6) 591 cao www 3	A1		<i>r</i> or their angle <i>BOM</i> for M2 or M1	
(c)	(c) 35.5 (35.48 to 35.57) cao www 4		4	Allow 78.58. M1 Circle = (66.15 to 66.2	$\pi \times 4.59^2$ Allow 4.590 to 4.591 22) ent) % = triangle / circle × 100	

Page 4		Mark Scheme: Teach IGCSE – May/Jui			Syllabus 0580
		IGCSE – May/Jul		<u> </u>	US80 Pacar
5 (a)	9.11, 4.25, 2,, 2, 4.25, 9.11		3 B2 for 4 or 5 correc		correct and B1 for 2 or 3 corr
(b)	Smo	oints plotted ooth curve through 12 points o branches, neither touching <i>y</i> -axis	5	or 9. C1 correct sh	Syllabus 0580 correct and B1 for 2 or 3 corr a), P2 for 10 or 11 points, P1 for 8 hape ft their points shape same. ing between – 0.5 and 0.5. ent
(c)	~ ~	(i) $x = 0$ (ii) tangent at -1.5 -3 to -1.8		Dependent of M1(also dep SC1 for 1.8 t	on T1) for attempt at rise/run or
		-1.7 to -1.55 , -0.7 to -0.55 , 0.55 to 0.7, 1.55 to 1.7 y = 2x drawn to meet graph twice 1 1.8 to 1.9	2 B1 B1 B1	B1 for 1 or n	
6 (a)	(ii) (iii)	5.8 4.6 to 4.65 2.35 to 2.5 172 or 171	1 1 1 2	SC1 for 28 o	r 29
(b)	(i) (ii)	72 to 76, 38 to 42 Their correct Σ <i>fx</i> ÷ 200	2 4	M1 for 3 or $\frac{2}{8.5}$ M1 for Σfx , f in interval, in $36 \times 2 + (72)$ 8.5 M1 for $\div 200$ M1) (74, 40 give Other pairs of	gers. B1 either. 4 correct mid-values seen 2, 5, 6.5, ft their frequencies and x anywhere ncluding boundaries to 76) \times 5 + (38 to 42) \times 6.5 + 50 \times 0 or their 200 (dependent on second 1127 then 5.635 (or 5.64 or 5.63)) of frequencies from (b)(i) must have to gain the A mark.
	(iii)	$p \div 2$, q, where p, q are from (b)(i) Histogram with two new columns of correct width	2ft		(ft their table)
		Two correct heights	2ft		r freq. densities)

Page 5 Mark Scheme: Teach		ers' version		Syllabus 7. r	
	IGCSE – May/Jur				0580
				-	any .
7 (a)	Correct tree diagram.		5		flower and not flower for $\frac{7}{10}$ and $\frac{3}{10}$
				B1 for next th B1 for clear 1 B1 for $\frac{2}{3}$, $\frac{1}{4}$ If three brance	Syllabus 0580 flower and not flower for $\frac{7}{10}$ and $\frac{3}{10}$ hree branches after flowers labels for colours and $\frac{1}{12}$ in correct places thes at ends of both branches of first al B, unless probabilities of 0
(b)	$\frac{33}{40}$ o.e.	(0.825) cao	3	$\frac{7}{10} \times \left(1 - \frac{1}{4}\right) \right) $ or	$\frac{7}{10} \times \frac{2}{3} + \frac{7}{10} \times \text{their } \frac{1}{12}$
(c)	7 cao		2	M1 for 120 ×	$\frac{7}{10}$ × their $\frac{1}{12}$
8 (a)	Arc centre <i>D</i> , radius 6 cm		1		
(b)	(i) Perp of ar	bisector of <i>AB</i> , with two pairs	2		from <i>AB</i> . SC1 accurate without ate arcs (but no choice)
		ctor of angle <i>B</i> , with arcs	2	At least 5 cm	from B . SC1 accurate without arcs rcs (but no choice)
(c)	· · · ·	intersection of loci m to 2.9 cm cao	1 1	Dependent or Dependent or	n at least both SC1's n (c)(i)
(d)		side arc, to left of perp bisector angle bisector	1	Dependent or	n at least both SC1's in (b)
9 (a)	(i) 81 (ii) 8.5		2 2	B1 for (f(2) = B1 for (f(0.5)	·
(b)	$\frac{x-1}{3}$ oe		2	or $3y = x - 1$	$\frac{y-1}{3} \text{ or } (x =) \frac{f(x)-1}{3}$ or $3f(x) = x - 1$ 3 in flowchart (must be clear)
(c)	$3x^2 + 12x$	+ 13 final answer	2	M1 for $3(x +$	$(2)^2 + 1$ or better
(d)	$(x =) \frac{-3}{-3}$	$\frac{\pm\sqrt{3^2-4(1)(1)}}{2(1)}$	2	•	$\frac{1}{r} - 4(1)(1)$ or better Seen anywhere $\frac{1}{r} + \sqrt{q}$ or $\frac{p - \sqrt{q}}{r}$ oe,
	-2.62, -0	38 final answer	1,1	B1 for $p = -3$ or $(x + \frac{3}{2})^2$ E If 0, SC1 for	3 and $r = 2(1)$ 31 then $\sqrt{\frac{9}{4} - 1}$ B1 -2.6 or - 2.62 or -2.618 or - 0.38 or -0.382 to -0.381 seen

.

Page 6		Mark Scheme: Teachers' version IGCSE – May/June 2011		ersion Syllabus 70 r 1 0580
10 (a)	(i) (a) p	o + q	1	annu
	(b) -	$\frac{1}{2}\mathbf{p}-\frac{1}{2}\mathbf{q}$ oe	2	ersionSyllabus10580M1 for $\overrightarrow{LC} + \overrightarrow{CM}$ o.e. can be written in the of p and/or q M1 for $\overrightarrow{AD} + \overrightarrow{DL} + \overrightarrow{LN}$ o.e. can be written in terms of p and/or q ft their (i)(b)
	(c) -	$\frac{3}{4}\mathbf{p} + \frac{3}{4}\mathbf{q}$ oe cao	2	M1 for $\overrightarrow{AD} + \overrightarrow{DL} + \overrightarrow{LN}$ o.e can be written in terms of p and/or q ft their (i)(b)
	(ii) \overrightarrow{AN}	is a multiple of \overrightarrow{AC} o.e	1	Must be vectors (dependent on answers to (a), (c))
(b)	(i) 30 (ii) 135		2 1 ft	M1 for $2x + x + 15 + 75 = 180$ or better ft 165 – their x but only if final answer obtuse
11 (a)	(i) 10		1	
	(ii) $\frac{3\times 4}{2}$	or $\frac{3 \times (3+1)}{2}$ (= 6)	1	
	(iii) 7260		1	
	(iv) 12 84	40	2	M1 for $S_{200} - S_{120} (20100 - 7260)$ or $\frac{80}{2} (121 + 200)$ o.e.
	(v) 160 4	400	2	M1 for $2(1 + 2 + 3 + \dots + 400)$ o.e.
(b)	(i) 36, 1		1, 1	Ignore right-hand column
1	(ii) 1102		1	
	(iii) $\left\lfloor \frac{n(n-1)}{n} \right\rfloor$	$\left(\frac{2+1}{2}\right)^2$ oe	1	isw
	(iv) 3348	3 900	1 2	M1 for square root then \times 2 (1056) or SC1 for answer 33
	(v) 32		Δ	of SC1 for answer 55