CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0580 MATHEMATICS

0580/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Mark Scheme	Syllabus
		IGCSE – October/November 2012	0580
Abbrev	viations		Syllabus 0580
cao	correct answer	only	
cso	correct solution	only	
dep	dependent		
	follow through	after error	
isw	ignore subseque	ent working	
oe	or equivalent		
SC	Special Case		
www	without wrong	working	
art	anything roundi		
soi	seen or implied	C	

Qu.	Answers	Mark	Part Marks
1	(a) (i) 126	2	M1 for $x + x + 18 + 90 = 360$ or better
	(ii) 144	1 ft	ft their $x + 18$
	(b) 16.66 to 16.67 or 16.7 oe	2	M1 for $60/360 \times 100$ oe (implied by answer 16.6)
	(c) (i) 22.18 to 22.19 or 22.2 oe	3	M2 for (35 + 36)/320 × 100 or B1 for 36 or 35 or 71 seen
	(ii) 58 www	2 ft	For 2ft, $114 - \text{their } (\mathbf{a})(\mathbf{ii})/360 \times 140 \text{ correctly}$ evaluated (correct or to the nearest integer) or M1 for $(360 - 60 - 72)/360 \times 180 [114]$ or 56ft (their $(\mathbf{a})(\mathbf{ii})/360 \times 140)$ seen
	(d) (i) 50, 70, 100, 135	M1	At least 3 correct mid-values seen
	$(5 \times 50 + 14 \times 70 + 29 \times 100 + 32 \times 135)$ [= 8450]	M1	$\sum fx$ where x is in the correct interval allow one further slip
	$\div 80$ or their $\sum f$	M1	Depend on second method
	106 or 105.6 or 105.625 or 105.62 or 105.63 cao www	A1	isw conversion to mins/secs & reference to classes
	(ii) 1		B3 for 2.9 and 4.27
	2.9 oe		or B2 for 2.9 or 4.27
	4.27 [4.266 to 4.267] oe	4	and B1 for 1
			Or SC2 for 0.25 oe and 0.725 oe and 1.066 to 1.07 oe seen
			Or SC1 for any pair of the above seen

 Page 3
 Mark Scheme
 Syllabus

 IGCSE – October/November 2012
 0580

			24
2	(a) (i) 14 -5.5 20	1+1+1	P2 ft for 8 or 9 correct P1 ft for 6 or 7 correct
	(ii) 10 correct points plotted	P3 ft	P2 ft for 8 or 9 correct
			P1 ft for 6 or 7 correct
			Centre of point must touch line if exact or be in correct square (including boundaries)
	Smooth curve through all 10 points	C1	Within 1 mm radially of potted points. In absence of plot[s], allow curve to imply plot[s]
	correct shape		No ruled sections
	(b) -4.8 to -4.6, -0.4 to -0.2, 3 to 3.1	1+1+1	After 0 scored, SC1 for $y = 2$ soi
	WWW		Penalise first occurrence of co-ord answers in (b) and (d)(ii)
	(c) Tangent drawn at $x = -4$	T1	Not chord or daylight
	Attempts y step/ x step with correct scales	M1	Dep on T1 or close attempt at tangent at $x = -4$
	6 to 11	A1	Dep on M1 only
	(d) (i) Ruled line through (1, 15) and (3, -5)	3	L2 for short line but correct or freehand full length correct line.
			L1 for ruled or freehand line through $(0, 10)$ (but not $y = 10$) or for ruled line with gradient -5
	(ii) 2.5 to 2.7	1	isw for extra solns from wrong curve/line
;	(a)		
	(g =)11	1	
	(i 15 (h=) 5)	1ft	ft 16 – their 11
	h5 g 11 (<i>i</i> =)15	1ft	ft 20 – their 5
	j 8 $(j=) 8$	1ft	ft 39 – (their 11 + their 5 + their 15)
			ft for positive integers only
	(b) (i) 5	1	
	(ii) 51	1 ft	ft 36 + their <i>i</i>
	(c) (i) 15	1	
	(ii) 10	1	
	(1) 10	1	In (d) and (a) account fraction $\frac{9}{4}$ day acquivelents
	(d) (i) $\frac{13}{13} \approx [0, 144]$	1	In (d) and (e) accept fraction, %, dec equivalents (3sf or better) throughout but not ratio or words
	(d) (i) $\frac{13}{90}$ oe [0.144]		isw incorrect cancelling/conversion
	(ii) $\frac{15}{90}$ oe [0.167]	1	

					Mary .	
Page 4		Mark Scheme			Syllabus	
		IGCSE – October/Nov	vember	2012	0580 23	
	(e) (i)	$\frac{20}{8010}$ oe [0.0025[0]]	2	M1 for $\frac{5}{90}$ × After M0, SC	$\frac{5 \text{ yllabus}}{0580} \text{ r}$ $\frac{4}{89} \text{ oe}$ $1 \text{ for } \frac{5}{90} \times \frac{5}{90} \text{ oe}$	
	(ii)	$\frac{598}{8010}$ oe [0.0747]	3	M2 for $\left(\frac{23}{90}\times\right)$ or M1 for one	90 90 $\frac{13}{89} + \left(\frac{13}{90} \times \frac{23}{89}\right) \text{oe}$ e product soi [0.0373] 1 for 2 $\left(\frac{23}{90} \times \frac{13}{90}\right) \text{oe}$	
4		2.5 or $\frac{5}{2}$	2	M1 for one co i.e $6x = k$ or a or for $4x + 2x$	prrect step collected $x = 15$	
	(ii)		2			
	(b) (i)	$27x^3y^{12}$ final answer	2	B1 for 2 corre	ect elements	
	(ii)	$4a^3b^{[1]}$ final answer	2	B1 for 2 corre	ect elements	
	(iii)	$\frac{x+1}{x+8}$ www final answer	4	or $ab = -8$	(x + 1) seen + a)(x + b) where $a + b = -7$ + 8)(x - 8) seen	
5	(a) 55.6	to 55.61 www	3	or M1 for 46^2 or $46^2 + 20^2$ or	$\frac{1}{12} + 24^{2} + 20^{2} \text{ oe } \left[\sqrt{3092}\right]$ + 24 ² oe [soi by 2692 or art 51.9] e [soi by 2516 or art 50.2] e [soi by 976 or art 31.2]	
	(b) 90.6	or 90.57 to 90.58	3	(2011	$\frac{0000}{24 \times 46}$ × 100 oe × 24 × 46 [22080]	
	• •	19 to 25.21, 30.23 to 30.246 or 2, 57.95 to 57.97 or 58[.0]	3		$\sqrt[3]{2}$ or $24 \times \sqrt[3]{2}$ or $46 \times \sqrt[3]{2}$ be seen [1.259 to 1.261]	
	(d) 16.8	3 to 16.842	3	16842	$\frac{\overline{000}}{3\pi}$ oe or answer figs 168 to $\frac{\overline{20000}}{4/3\pi}$ [4770 - 4780] seen	

Page 5		Mark Scheme			Syllabus Syllabus
		IGCSE – Octobe	r/November	2012	0580 230
(a)	(i)	$\begin{pmatrix} -2\\ -1 \end{pmatrix}$	1		Syllabus 0580 $+(-7^2)$ oe
	(ii)	7.28 [0] or $\pm \sqrt{53}$ as final answer	2	M1 for $\sqrt{2^2}$	$+(-7^2)$ oe
	(iii)	$\pm \sqrt{55}$ as final answer [m =] 3.5 oe and [n =] -1.5 oe	6	and B1 for 3/ and M1 for c coefficients a arithmetic err ft their sim er or M1 for co and M1dep f	qns for both m's rrect rearrangement (allow 1 sli for correct substitution qns for both m's
(b)	(i)	$-\mathbf{p} + \mathbf{q}$	1	Condone col	umn vector used
	(ii)	$-\frac{3}{5}\mathbf{p} + \frac{3}{5}\mathbf{q}$ oe	1 FT	$[a \neq 0, b \neq 0]$	$\frac{3}{5}$ (their (b)(i)) dep on $ap + ba$
	(iii)	Parallel similar 9 : 25 oe	1 1 1	Accept enlarg e.g 1 : 2.77 [
(a)	(i)	360 ÷ 5	1	Accept longe	er correct methods
	(ii)	(180 – 72) ÷ 2	M1	Accept [(5 –	2) × 180] or 360 / 5 M1
		54 × 2	E1	Then ÷ 5	180 – 72 E1
	(iii)	180 - 90 - 72	1	Accept other explained	methods provided they are full
(b)	2 ×	7 × sin(72/2) oe	M2	or M1 for im or M2 for (7 sin	=] $7^2 + 7^2 - 2.7.7 \cos 72$ plicit version
	8 22	28 to 8.229	E1	Dep on M2 a	nd with no errors seen

Page 6			Mark Scheme			
		IGCSE – October/No	October/November 2012		0580 730	
	(c) (i) 23.3[0]		2 M1 for ¹ / ₂		$\begin{array}{c c} & & & & & & \\ \hline \\ \hline$	
	(ii)	116.5 to 116.52 or 117	1 ft	ft their (c)(i) × 5		
	 (iii) 30.78 to 30.8 (iv) 12.66 to 12.67 or 12.7 (d) 1.43 or 1.432 to 1.453 cao 		2	M1 for $72/360 \times \pi 7^2$		
			2	M1 for 7 + 7 cos 36 oe [7 + 5.66] e.g 8.23 cos54 + 8.23 sin72 oe [4.84 + 7.83]		
			5	B4 for area of rectangle = 168.3 to 169.2 www or area of triangular corners = 51.6 to 52.5 www or B3 for 13.3 to 13.32 seen or M2 for $[ZY =] 8.23 + 2(8.23\sin 18)$ oe or 2 (8.23 sin 54) or 2 × 7 sin 72 oe or B1 for $[CY =] 2.54[3]$ or 5.08 to 5.09 seen or $[AX =] 6.65$ to 6.66 seen		
8	(a) $2x + 7$ final answer $x + 9$ final answer		2	B1 for each, accept in either order After 0 scored allow SC1 mark for both correct but unsimplified		
	(b) 2(2	(2x+3)(x+5) at any stage	M1		d be embedded within one of the $(4x+6)(x+5)$	
	$2x^2$	$x^{2} + 3x + 10x + 15$ or better	B1		ckets correctly	
	$4x^2$	$x^{2} + 26x + 30$	E 1	No errors see	en and two previous stages shown	
	(c) (i)	$4x^2 + 26x - 45 = 0$ soi	B1			
		$\frac{-26\pm\sqrt{(26)^2-4(4)(-45)}}{2(4)}$			+ $26x \pm k \ [k \neq 0]$ oe ot B1 ft for $(26)^2 - 4(4)(-45)$ or 6)	
					$\frac{p+\sqrt{q}}{r}$ or; $\frac{p-\sqrt{q}}{r}$ 6 and 2(4) or better	
	-7.	.92, 1.42 final answers	B1 B1		or –7.9 and 1.4 or both answers 1.420	
	(ii) 6.42 [0]		1 ft	ft their greate	est positive root	
				If their $x \le 2$		
				If their $x > 2$ then ft $2x + 3$		

	Page 7	Mark Scheme			Syllabus Syllabus	
		IGCSE – October/Nov	IGCSE – October/November 2012		0580	
9	(a) 5.79 × 5.21 39.5			Syllabusr 20120580Accept ans in range 57890000 to 579005.20739.50 or 39.51Accept answers to greater than 3sfM1 for $1.496 \times 10^8 \div 300\ 000$		
		198.6 to 499	2	M1 for 1.496		
	(ii) 3	328 or 328.3	2	M1 for figs 1 Or their 39.5	97 or figs 328[3] seen × their (b)(i)	
	(c) 9.46[0	0] to 9.461×10^{12}	3	or M1 for 30	prrect equivalent $0\ 000 \times 3600 \times 24 \times 365$ oe	
	(d) 63200) or 63235 to 63242 oe	2		figs 946 to 9461 their (c) ÷ 1496). Implied by first 3	