

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			0580/21
Paper 2 (Extended)		0	May/June 2016
Candidates answer or	the Question Paper.	10	nour 30 minutes
Additional Materials:	Electronic calculator Tracing paper (optional)	Geometrical instruments	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

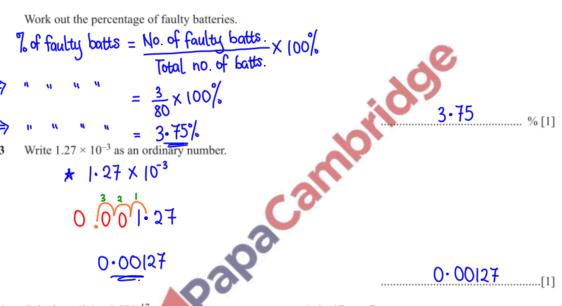
For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 70.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.


1 A train leaves Zurich at 2240 and arrives in Vienna at 0732 the next day.

Work out the time taken.

min [1]

2 From a sample of 80 batteries, 3 are faulty.

Work out the percentage of faulty batteries.

3

0.00127

Calculate $(2.1 - 0.078)^{17}$, giving your answer correct to 4 significant figures.

$$\star$$
 (2·1-0·078) = 157862.7163...
 \simeq 157900 (4 sig. figs.) 157900 [2]

5 Omar changes 2000 Saudi Arabian riyals (SAR) into euros (€) when the exchange rate is €1 = 5.087 SAR.

Work out how much Omar receives, giving your answer correct to the nearest euro.

393 [2]

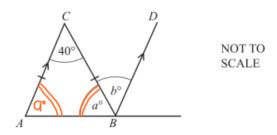
Find the lowest common multiple (LCM) of 36 and 48.

★ Multiples of 36: 36, 72, 108, (144), 180, ...

★ Multiples of 48: 48, 96, 144, ...

7 y = mx + c

Find the value of y when m = -2, x = -7 and c = -3.


$$\Rightarrow y = (-2x-7)+(-3)$$

$$y = \frac{qx}{p}$$

8

Write x in terms of p, q and y.

$$\Rightarrow x = \frac{yp}{q}$$

Triangle ABC is isosceles and AC is parallel to BD.

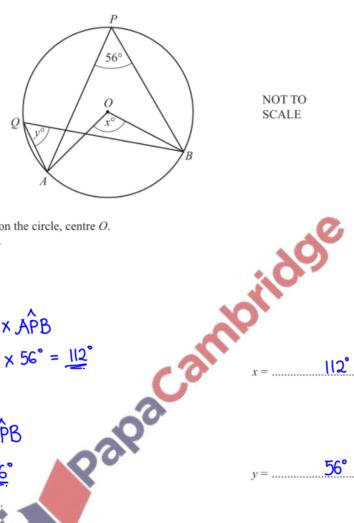
Find the value of a and the value of b.

Find the value of
$$a$$
 and the value of b .

The finding a and the value of b .

Finding a and the value of a and the value of b .

Finding a and the value of a and the value of b .


Finding a and the value of a and the value of b .

Finding a and the value of a and a

The sides of an equilateral triangle are 9.4 cm, correct to the nearest millimetre.

Work out the upper bound of the perimeter of this triangle.

• UB(l) =
$$(9.4 + \frac{0.1}{2})$$
 cm = 9.45 cm

NOT TO SCALE

A, B, P and Q lie on the circle, centre O. Angle $APB = 56^{\circ}$.

Find the value of

(a) x,

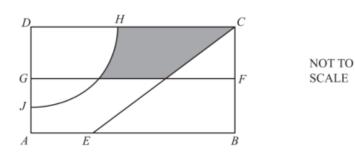
$$\star \chi = 2 \times APB$$

 $\Rightarrow \chi = 2 \times 56^{\circ} = 112^{\circ}$

(b) y.

12 Simplify $(16p^{16})^{\frac{1}{4}}$

$$\Rightarrow 2p^4$$


13 Solve the inequality.

$$n+7 < 5n-8$$

$$\Rightarrow \frac{15}{4} < n$$

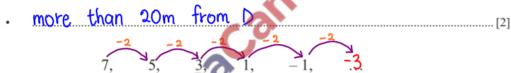
$$\Rightarrow 3.75 < n \text{ or } n > 3.75$$

$$v = 56^{\circ}$$

The diagram shows a rectangular garden divided into different areas.

FG is the perpendicular bisector of BC.

The arc HJ has centre D and radius 20 m.


CE is the bisector of angle DCB.

Write down two more statements using loci to describe the shaded region inside the garden.

The shaded region is

nearer to C than to B

. nearer to CD than to CB

15

© UCLES 2016

(a) Find the next term in this sequence

9-2n

(b) Find the *n*th term of the sequence.

*
$$a_n = Q_1 + (n-1)d$$

• $a_1 = 7$
• $d = -2$

$$\Rightarrow a_n = 7 + (n-1)x - 2$$

$$\Rightarrow a_n = 7 - 2n + 2$$

$$\Rightarrow a_n = 9 - 2n$$

0580/21/M/J/16

Without using a calculator, work out $\frac{6}{7} \div 1\frac{2}{3}$.

Show all your working and give your answer as a fraction in its lowest terms.

$$\star \frac{6}{7} \div \left| \frac{2}{3} \right|$$

$$\Rightarrow \frac{6}{7} \div \frac{5}{3}$$

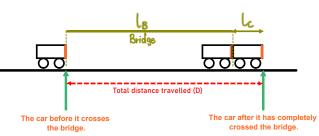
$$\Rightarrow \frac{6}{7} \times \frac{3}{5}$$

Five angles of a hexagon are each 115°.

Calculate the size of the sixth angle.

**Total of interior angles =
$$180^{\circ}(n-2)$$

(5×115°) + $x = 180^{\circ}(6-2)$
 $\Rightarrow 575^{\circ} + x = 720^{\circ}$
 $\Rightarrow x = 145^{\circ}$

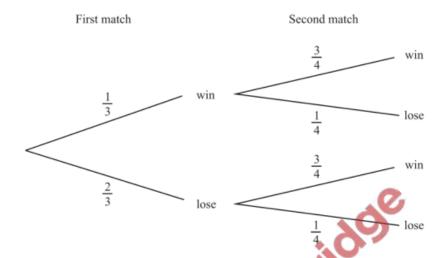

A car of length 4.3 m is travelling at 105 km/h.

$$(5 \times 115^{\circ}) + \chi = 180^{\circ}(6-2)$$

$$\Rightarrow$$
 575° + $\chi = 720$ °

A car of length 4.3 m is travelling at 105 km/h. It passes over a bridge of length 36 m.

Calculate the time, in seconds, it takes to pass over the bridge completely.



(Note: We are using the front of the car as the reference point.)

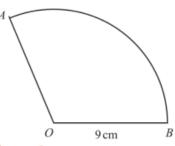
(Note: We are using the front of the car as the reference point.)

1.38

19 The probability of a cricket team winning or losing in their first two matches is shown in the tree diagram.

Find the probability that the cricket team wins at least one match.

$$P = \left[P(W_1) \times P(L_2) \right] + \left[P(L_1) \times P(W_2) \right] + \left[P(W_1) \times P(W_2) \right]$$


$$\Rightarrow P = \left(\frac{1}{3} \times \frac{1}{4}\right) + \left(\frac{2}{3} \times \frac{3}{4}\right) + \left(\frac{1}{3} \times \frac{3}{4}\right)$$

5 6

AB is an arc of a circle, centre O, radius 9 cm. The length of the arc AB is 6π cm. The area of the sector AOB is $k\pi \text{ cm}^2$.

Find the value of k.

NOT TO SCALE

$$\Rightarrow \frac{9}{360} \times \pi(9)^2 = k\pi \Rightarrow \text{Arc length} = 6\pi$$

$$\Rightarrow \left(\frac{810}{360^{\circ}}\right)\pi = k\pi$$

$$\Rightarrow k = \frac{810}{360}$$

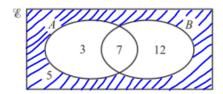
$$\Rightarrow \frac{\theta}{360} \times 2\pi(9) = 6\pi$$

$$\Rightarrow \theta = 120$$

$$k = \frac{81 \times 120}{360^{\circ}} = 27$$

y is directly proportional to the positive square root of x. When x = 9, y = 12.

Find y when $x = \frac{1}{4}$.


$$\Rightarrow$$
 y = kJx

when
$$x=9$$
, $y=12$

 $12 = k\sqrt{9}$

$$4 y = 4\sqrt{x}$$
when $x = \frac{1}{4}$,

when
$$x=\frac{1}{4}$$

The Venn diagram shows the numbers of elements in each region.

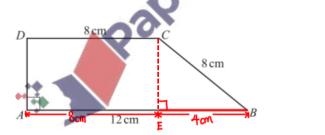
(a) Find $n(A \cap B')$.

(b) An element is chosen at random.

Find the probability that this element is in set B. ★P=No. of elements in Set B Total no. of elements

(c) An element is chosen at random from set A.

Find the probability that this element is also a member of set B


★ $P = \frac{\text{No. of elements in A and B}}{\text{No of elements in A}}$

NOT TO SCALE

(d) On the Venn diagram, shade the region (A

[1]

23

Calculate the area of this trapezium.

A trapezium = $\frac{1}{2}$ (DC+AB) x AD • Finding AD \Rightarrow Atrapezium = $\left[\frac{1}{2}(8+12)x + 43\right] cm^2$ BC² = AD² + EB² \Rightarrow Atrapezium = $\frac{69.3 cm^2}{3}$ (3 sig. figs.) \Rightarrow AD = $(\sqrt{8^2-4^2})$ cm 69·3 cm² [4] > AD= J48 cm

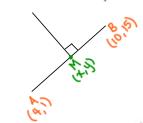
- 24 Factorise completely.
 - (a) 2a+4+ap+2p

$$\Rightarrow 2(a+2) + p(a+2)$$

$$\Rightarrow (q+2)(2+p)$$

(b) $162 - 8t^2$

$$\Rightarrow 2(81-4t^2)$$


$$\Rightarrow 2((9)^{2}-(2t)^{2})$$

$$\Rightarrow 2(9+2t)(9-2t)$$

2(9+2t)(9-2t)

25 A is the point (4, 1) and B is the point (10, 15).

Find the equation of the perpendicular bisector of the line AB.

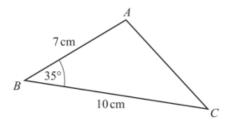
· Finding m

$$m \times m_{cx} = -1$$

$$|\mathbf{u}| \times \mathbf{u} \vee \mathbf{R} = -1$$

$$\Rightarrow m \times \left(\frac{15-1}{10-9}\right) = -1$$

$$\Rightarrow m \times \frac{7}{4} = -1$$


$$\Rightarrow$$
 $m = -\frac{3}{7}$

★
$$y = -\frac{3}{7}x + C$$

$$8 = -\frac{3}{7}(7) + C$$

$$y = -\frac{3}{7}x + 11$$
 [6]

Question 26 is printed on the next page.

NOT TO SCALE

(a) Calculate the area of triangle ABC.

$$\star A_{\Delta ABC} = \frac{1}{2} \times AB \times BC \sin ABC$$

$$\Rightarrow$$
 $A_{\Delta ABC} = \left(\frac{1}{2} \times 7 \times 10 \sin 35^{\circ}\right) \text{cm}^2$

bridge 20.1

(b) Calculate the length of AC.

*
$$AC^2 = AB^2 + BC^2 - 2(AB)(BC)\cos ABC$$

 $\Rightarrow AC = (\sqrt{7^2 + 10^2 - 2(7)(10)\cos 35^\circ}) cm$

$$\Rightarrow$$
 AC = 5.86 cm (3 sig. figs.)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.