

Topical Worksheets for Cambridge IGCSE™ Mathematics (0580)

Algebra and Graphs

Mark Scheme

1st edition, for examination until 2025

Question	Answer	Marks	AO Element	Notes	Guidance
1	7n + 5 oe final answer	2		B1 for $7n + a$ or $bn + 5$ $b \neq 0$	
2	52	1			
3	7	3		M2 for $166 + 2x = 180$ or better or M1 for $97 - 3x + 69 + 5x = 180$ oe	
4	$x^2 - 12x + 35$	2		B1 for any three of x^2 , $-5x$, $-7x$, $+35$	
5	$4p^7q^{-1}$	2	CO	B1 for $4p^7 q^a$ or $4p^b q^{-1}$ or $\frac{4p^b}{q}$	
6	7a(3a+4b) final answer	2	0	B1 for partial factorisation 7 $(3a^2 + 4ab)$ or a (21a + 28b)	
7	M2 for $x + x + 8 + 2x - 3 = 117$ or better M1 for $4x + 5 = 117$ oe or better A1 for 28	4		or B1 for $x + 8$ or $2x - 3$ If 0 scored, SC1 for the correct answer with no algebra	

Question	Answer	Marks	AO Element	Notes	Guidance
8	28, -34	4		Trial and improvement	
				OR	
				B1 for $x + y = -6$ oe	
				B1 for $x - y = 62$ oe	
			• <u>•</u>	B1 for 28 or –34	
9	$2t^4$	2		B1 for $2t^n$ or kt^4 $(n, k \neq$	
				0)	
10(a)	p^6	1			
10(b)	m^{10}	1	-0		
10(c)	k ¹⁵	1			
11	11h - 2w final answer	2	0	M1 for $11h + kw$ or $hh = 2w$	
				kh - 2w	
12	[y =]5x - 4	2			

•

Question	Answer	Marks	AO Element	Notes	Guidance
13	1.8 or $1\frac{4}{5}$	3		M2 for $m = \frac{k}{(p-1)^2}$ or M1 for $m = \frac{their k}{(6-1)^2}$ OR M2 for $5(4-1)^2 = m(6-1)^2$ oe	
14	5(2x + 3y)(2x - 3y) final answer	3	Contra	B2 for (2x + 3y) (2x - 3y) or $(10x + 15y) (2x - 3y)$ or $(2x + 3y) (10x - 15y)$ or B1 for 5 $(4x^2 - 9y^2)$	
15	990			M2 for correct complete area statement e.g. $\frac{1}{2} \times 30 \times (6 + 12) + 60 \times$ oe or M1 for one area calculation	12

Question	Answer	Marks	AO Element	Notes	Guidance
16	$\frac{3x+1}{5}$	3		M2 for $x = \frac{3y+1}{5}$, 5y = 3x + 1 or $y - \frac{1}{5} = \frac{3x}{5}$ M1 for $x = \frac{5y-1}{3}$, 3y = 5x - 1 or $y + \frac{1}{3} = \frac{5x}{3}$	
17	$3x^3 - 7x^2 - 43x + 15$	3		B2 for correct expansion and simplification of two of the brackets or B1 for correct expansion of two brackets with at least 3 terms correct	
18	[<i>p</i> =] –13	20		M1 for $4(5x - 4) + 3$ or better	

Question	Answer	Marks	AO Element	Notes	Guidance
19	x + y < 4 $y \ge 1.5$ $y \le 2x + 1$	4		B3 for any two correct OR B1 for $y \ge 1, 5$ B2 for $x + y < 4$ or $y \le 2x + 1$ or $x + y = 4$ and y = 2x + 1 or with incorrect inequality signs or B1 for $x + y = 4$ or y = 2x + 1 or SC3 for > instead of ≥ etc.	
20	4	2		M1 for $y^{\frac{2}{3}} = x^{\frac{1}{6}}$ or $y^{2} = \sqrt{x}$ or $y^{4} = x$	
21	-2	20		M1 for (-3)(-2) + (-8)	

$\frac{2x-5}{a-2b}$ final answer	5			
			B2 for $(2x - 5) (x + 3)$ or B1 for (2x + p) (x + q) where	
			pq = -15 or p + 2q = 1 B2 for (x + 3) (a - 2b) or B1 for x (a - 2b) + 3 (a - 2b)	
125x ¹²	2		or $a(x + 3) - 2b(x + 3)$ B1 for $125x^k$ or kx^{12}	
8 <i>x</i> ⁹⁶	2		B1 for $8x^k$ or kx^{96}	
$[\pm]\sqrt{\frac{h^2 - x^2}{2}}$	3	<u>C</u>	$\begin{array}{c c} \mathbf{M1} \text{ for correct} \\ \text{rearrangement for } y \text{ or } y \\ \mathbf{^2} \text{ term} \end{array}$	
	Q		M1 for correct square root	
	5.0.		MI for correct division by 2 or $\sqrt{2}$	
	2		M1 for $1 - x = 3 \times 5$ or better or $\frac{x}{3} = 5 - \frac{1}{3}$ or better	
	$[\pm]\sqrt{\frac{h^2 - x^2}{2}}$	$8x^{96} 2 3 [\pm] \sqrt{\frac{h^2 - x^2}{2}} 3 (\pm) \sqrt{\frac{h^2 - x^2}{2}} (\pm) \sqrt{\frac{h^2 - x^2}{2}} $	$ \frac{125x}{8x^{96}} \qquad 2 \\ [\pm]\sqrt{\frac{h^2 - x^2}{2}} \qquad 3 \\ [\pm]\sqrt{\frac{h^2 - x^2}{2}} \\ $	B2 for $(x + 3)$ $(a - 2b)$ of B1 for $x(a - 2b) + 3$ $(a - 2b)$ or $a(x + 3) - 2b(x + 3)$ 125x ¹² 2B1 for $125x^k$ or kx^{12} $8x^{96}$ 2B1 for $25x^k$ or kx^{96} $(\pm)\sqrt{\frac{h^2 - x^2}{2}}$ 3M1 for correct rearrangement for y or y 2 term $M1$ for correct square root M1 for correct division by 2 or $\sqrt{2}$ -14 2

Question	Answer	Marks	AO Element	Notes	Guidance
26	$\frac{2p^2}{t}$	2		B1 for correct unsimplified answer	
27	16	3		M1 for $p = k(q+2)^2$ M1 for $p = (their k)(10+2)^2$ OR M2 for $\frac{p}{(10+2)^2} = \frac{1}{(1+2)^2}$ oe	
28(a)	Correct lines and correct region clear	5		B2 for $2x + y = 8$ correctly ruledor B1 for ruled line with negative gradient B1 for $y = x$ correctly ruled B1 for $x = 2$ correctly ruled	
28(b)	6	1			
29(a)	0.3 oe	1			

Question	Answer	Marks	AO Element	Notes	Guidance
29(b)	3060	3		M2 for	
				$\frac{1}{2}(300+210) \times 12$ oe	
				or M1 for one correct	
				part area	
30	[<i>y</i> =] 1	3		M1 for $y = k \times \sqrt[3]{x+3}$	
				M1 for	
				$y = their \ k \times \sqrt[3]{24+3}$	
				OR	
				M2 for	
				$\frac{y}{\sqrt[3]{24+3}} = \frac{2}{3} \times \frac{1}{\sqrt[3]{5+3}}$	
			C >	oe	
31(a)	$(x-9)^2 - 108$	2		B1 for $(x+h)^2 - 108$ or	
				$(x-9)^2 + h \text{ or } k = -9$	
31(b)	19.4 or 19.39	2		M1FT for	
	– 1.39 or – 1.392			$x - their 9 = \pm \sqrt{their \ 108}$	
				A1 for $9 \pm \sqrt{108}$ or	
				$9 \pm 6\sqrt{3}$	
32(a)	4 7 🚜	2		B1 for one correct	

Question	Answer	Marks	AO Element	Notes	Guidance
32(b)	Correct curve	4		B3FT for 6 or 7 points correct or B2FT for 4 or 5 points correct or B1FT for 2 or 3 points correct	
32(c)	x = 1 oe	1			
32(d)	-1.9 to -1.7 and 3.7 to 3.9	2	NO.	B1 for each	
33	[<i>x</i> =] 2.5	2		M1 for $12x = 23 + 7$ or $x - \frac{7}{12} = \frac{23}{12}$	
34	8	2		M1 for correct attempt e.g. 12 + 14 + 16	
35	[<i>h</i> =] 8.4	3		B2 for 38. 64 = 4. 6 <i>h</i> or 77. 28 = 9. 2 <i>h</i> or $\frac{2 \times 38. 64}{5.5 + 3.7}$ or B1 for 38. 64 = $\frac{(5.5 + 3.7)h}{2}$ or M1 for $[h =]\frac{2A}{a+b}$	

Question	Answer	Marks	AO Element	Notes	Guidance
36	27 - 9x	1		6	
37	2c - 3d final answer	2		B1 for 2 <i>c</i> or -3 <i>d</i>	
38(a)	3x = 5y oe	2		B1 for each	
	2y = x + 4 oe			0.	
38(b)	[x =] 20	3		M1 for correctly eliminating one	
	[<i>y</i> =] 12			variable	
				B1 for one correct	
39	5x(1-4x) final answer	2		B1 for $5(x - 4x^2)$ or	
			C	x(5-20x)	
40(a)	25, 87, 329 circled	1			
40(b)	7				
40(c)	8	2		M1 for $\frac{349}{39}$	
				or B1 for at least four of	
				39, 78, 117, 156, 195, 234, 273, 312	
40(d)(i)	2n-1 oe	2		B1 for $2n + c$ or $kn - 1$, $k \neq 0$	

- Mark Scheme

Question	Answer	Marks	AO Element	Notes	Guidance
40(d)(ii)	79	1		FT <i>their</i> (d)(i) if linear	
40(d)(iii)	175	2		M1 for their $(2n - 1) = 349$ or $\frac{348}{2} + 1$ or $\frac{350}{2}$	
40(e)(i)	350 - 2n oe	2		B1 for $-2n + c$ or $kn + 350, k \neq 0$	
40(e)(ii)	174	2		B1 for each	
	$n \ge 175$ gives house numbers that are zero/negative			If 0 scored, SC1 for 175	
			10	1	[Total: 128]
		200	2		
