For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

E3.2 Construction

Question Paper

Level	IGCSE
Subject	Maths (0580)
Exam Board	Cambridge International Examinations (CIE)
Level	Core
Topic	E3. Geometry
Sub-Topic	E3.2 Construction
Booklet	Question Paper

Time Allowed: 40 minutes

Score: /33

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	75%	60%	45%	35%	25%	<25%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

8

1 (a) Using a straight edge and compasses only, construct the bisector of angle ABC.

[2]

(b) Using a straight edge and compasses only, construct the perpendicular bisector of the line *DE*.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

2 The diagram shows triangle ABC.

- (a) Using a straight edge and compasses only, construct the bisector of angle ABC. [2]
- (b) Draw the locus of points **inside** the triangle that are 3 cm from AC. [1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

3 The scale drawing shows a park, *ABCDE*. The scale is 1 centimetre represents 20 metres.

(a) Measure the bearing of B from A.

[1	1	Ĺ			
----	---	---	--	--	--

(b) A straight cycle path crosses the park from *E* to *BC*.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

All constructions in the following parts must be completed using a straight edge and compasses only. All construction arcs must be clearly shown.

	The	e path bisects angle AED.	
	(i)	Construct the cycle path.	[2]
	(ii)	Work out the actual length, in metres, of the cycle path.	
		m	[2]
	(iii)	Alice cycles from E to BC along the path at a constant speed of 9km/h .	
		(a) Show that 9 km/h is equivalent to 2.5 m/s.	
			[1]
		(b) Find the time she takes to cycle from <i>E</i> to <i>BC</i> .	
		Give your answer in seconds.	
		S	[2]
(c)	A st	raight footpath, equidistant from D and E , crosses the park from DE to AB .	
	Con	astruct the footpath.	[2]
(d)	(i)	Construct the locus of points 150 metres from <i>A</i> and inside the park.	[2]
	(ii)	A region for sports activities is less than 150 metres from A and closer to E than to D .	
		Shade this region.	[1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

- 4 Complete part (a) and part (b) using a straight edge and compasses only. Show all your construction arcs.
 - (a) Construct the locus of points that are equidistant from the points X and Y.

Y

[2]

(b) (i) Construct the locus of points that are equidistant from line AB and line AC.

[2]

(ii) Shade the region, inside the triangle, which is closer to AB than to AC.

[1]

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(c) Complete this part using a ruler and compasses only. Show all your construction arcs.

Construct the locus of points that are 4 cm from the line MN.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

5 Using a ruler and compasses only, construct a triangle with sides 5 cm, 6 cm and 7 cm.

The 5 cm side has been drawn for you.

[2]

6 In this question use a ruler and compasses.

Shade the region inside rectangle ABCD that is

• more than 2 cm from AD

and

• more than $4 \,\mathrm{cm}$ from B.