Coordinate geometry – 2020 IGCSE 0580

1. Nov/2020/Paper_11/No.20

Find the equation of line L in the form y = mx + c.

$$y =$$
 [2]

2. Nov/2020/Paper_12/No.16

(a)

(i) Write down the coordinates of point A.

(.....) [1]

(ii) On the grid, plot the point (2, -3). [1]

(iii) The line L is shown on the grid.

Find the equation of the line L in the form y = mx + c.

y =.....[2]

(b) Write down the equation of the line parallel to y = 5x + 6 that passes through (0, -7).

y = [1]

3. Nov/2020/Paper_13/	No.11
-----------------------	-------

A straight line, *l*, has equation y = 5x + 12.

(a) Write down the gradient of line 1.

(b) Find the coordinates of the point where line l crosses the x-axis.

4. Nov/2020/Paper_21/No.14

Find the gradient of a line that is perpendicular to 8y + 4x = 5.

.....[2]

5. Nov/2020/Paper_22/No.24

A line from the point (2, 3) is perpendicular to the line $y = \frac{1}{3}x + 1$. The two lines meet at the point P.

Find the coordinates of P.

6. Nov/2020/Paper_23/	No.12
-----------------------	-------

A straight line, *l*, has equation y = 5x + 12.

(a) Write down the gradient of line 1.

.....[1]

(b) Find the coordinates of the point where line l crosses the x-axis.

(c) A line perpendicular to line l has gradient k.

Find the value of *k*.

7. March/2020/Paper_12/No.9

(a) Write down the gradient of the line y = 2x - 3.

.....[1]

(b) Complete the table of values for y = 2x - 3.

х	-2	0	3
y			

[2]

(c) On the grid, draw the graph of y = 2x - 3 for $-2 \le x \le 3$.

8. March/2020/Paper_22/No.3

Point A has coordinates (6, 4) and point B has coordinates (2, 7).

Write \overrightarrow{AB} as a column vector.

$$\overrightarrow{AB} = \left(\qquad \right) \quad [1]$$

9. March/2020/Paper_22/No.17

A is the point (3, 5) and B is the point (1, -7).

Find the equation of the line perpendicular to AB that passes through the point A. Give your answer in the form y = mx + c.

Papacamion (Cambridge)

10. June/2020/Paper_11/No.21

Lucia invests \$5000 at a rate of 4.5% per year compound interest.

Calculate the value of her investment at the end of 7 years.

11. June/2020/Paper_12/No.12

Points A, B and C are shown on the grid.

(a) Write down the coordinates of point C.

(.....) [1]

(b) On the grid, plot point *D* so that *ABCD* is a parallelogram.

[1]

(c) On the grid, plot point E so that $\overrightarrow{EA} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

[2]

12. June/2020/Paper_12/No.23

(a) Find the gradient of line L.

(b) Write down the equation of line L in the form y = mx + c.

y = mx + c

Find the value of y when m = -3, x = -2 and c = -8.

14	lune	/2020	/Paner	41	/No.10
17.	Julie	/ 2020	/ raper	т т,	/ INO. TO

- (a) A rhombus ABCD has a diagonal AC where A is the point (-3, 10) and C is the point (4, -4).
 - (i) Calculate the length AC.

(iii) Find the equation of the line BD. Show that the equation of the line AC is y = -2x + 4. (ii)

[2]

- **(b)** A curve has the equation $y = x^3 + 8x^2 + 5x$.
 - (i) Work out the coordinates of the two turning points.

(ii) Determine whether each of the turning points is a maximum or a minimum. Give reasons for your answers.

3 E		10000	1-		4
15.	June	/2020	/Paper	43	/No.9

- (a) The equation of line L is 3x-8y+20=0.
 - (i) Find the gradient of line L.

the y-axis.

Find the coordinates of the point where line L cuts the y-axis.

(.....) [1]

(b)	The	coordinates of P are $(-3, 8)$ and the coordinates of Q are	e(9, -2).	
	(i)	Calculate the length PQ .		
	(ii)	Find the equation of the line parallel to PQ that passes to	hrough the point $(6, -1)$.	[3]
		Canto		[3]
	(iii)	Find the equation of the perpendicular bisector of <i>PQ</i> .		
				[4]