<u>Trigonometry – 2020 IGCSE 0580</u>

Nov/2020/Paper_11/No.21
 (a)

Calculate the value of x.

2. Nov/2020/Paper_12/No.22

Show that the value of x is 27.2, correct to 3 significant figures.

[3]

Nov/2020/Paper_21/No.21

NOT TO **SCALE**

The diagram shows a cuboid PQRSTUVW.

 $PV = 17.2 \, \text{cm}$

Palpacainin The angle between the line PV and the base TUVW of the cuboid is 43° .

Calculate PT.

4. Nov/2020/Paper_22/No.19

NOT TO SCALE

(a) Calculate the value of x.

..... cm² [3]

5. Nov/2020/Paper_22/No.25

Solve the equation $\tan x = 2$ for $0^{\circ} \le x \le 360^{\circ}$.

$$x = \dots$$
 or $x = \dots$ [2]

6. Nov/2020/Paper_33/No.8c

(c)

Calculate the value of x.

7. Nov/2020/Paper_41/No.6

The diagram shows a field, ABCD, on horizontal ground. $BC = 192 \,\mathrm{m}$, $CD = 287.9 \,\mathrm{m}$, $BD = 168 \,\mathrm{m}$ and $AD = 205.8 \,\mathrm{m}$.

(a) (i) Calculate angle *CBD* and show that it rounds to 106.0°, correct to 1 decimal place.

Califilation (4)

(ii) The bearing of D from B is 038° . Find the bearing of C from B.

.....[1]

(iii) A is due east of B.

Calculate the bearing of D from A.

.....[5]

(b) (i) Calculate the area of triangle *BCD*.

Palpa Cambrido Tomas buys the triangular part of the field, BCD. The cost is \$35,750 per hectare. Calculate the amount he pays. Give your answer correct to the nearest \$100. $[1 \text{ hectare} = 10000 \,\text{m}^2]$ \$[2] 8. Nov/2020/Paper_41/No.10b

(b)

- (i) On the diagram, sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$.
- (ii) Solve the equation $5 \tan x = -7$ for $0^{\circ} \le x \le 360^{\circ}$.

x =..... or x =.... [3]

[2]

Nov/2020/Paper_42/No.9

NOT TO **SCALE**

The diagram shows a prism with a rectangular base, ABFE. The cross-section, ABCD, is a trapezium with AD = BC. AB = 8 cm, GH = 5 cm, BF = 12 cm and angle $ABC = 70^{\circ}$.

(a) Calculate the total surface area of the prism.

(b) The perpendicular from G onto EF meets EF at	X.

(i) Show that $EX = 6.5 \,\mathrm{cm}$.

[1]

(ii) Calculate AX.

$$AX = \dots$$
 cm [2

Calculate the angle between the diagonal AG and the base ABFE.

10. March/2020/Paper_12/No.17

The diagram shows a right-angled triangle ABC.

Calculate AB.

11. March/2020/Paper_42/No.8

(a)

Ralpacalitical The diagram shows a quadrilateral PQRS formed from two triangles, PQS and QRS.

Calculate

(i) *QR*,

OR =	 cm	13

(iii) the area of quadrilateral PQRS.

(b)

E

NOT TO SCALE

16 cm

D

18 cm

The diagram shows an open box ABCDEFGH in the shape of a cuboid.

AB = 20 cm, BC = 18 cm and AE = 16 cm.

A thin rod AGX rests partly in the box as shown.

The rod is 40 cm long.

(i) Calculate GX, the length of the rod which is outside the box.

$$GX = \dots$$
 cm [4]

Calculate the angle the rod makes with the base of the box.

12. June/2020/Paper_21/No.19

The diagram shows cuboid ABCDEFGH of length 20 cm and width 5.5 cm. The volume of the cuboid is 495 cm^3 .

Find the angle between the line AG and the base of the cuboid ABCD.

13. June/2020/Paper_22/No.27

The diagram shows a cuboid. $AB = 8 \,\mathrm{cm}$, $AD = 6 \,\mathrm{cm}$ and $DH = 6 \,\mathrm{cm}$.

Calculate angle HAF.

The diagram shows a pyramid with a square base ABCD. The diagonals AC and BD intersect at M. The vertex V is vertically above M. AB = 11 cm and AV = 18.6 cm.

Calculate the angle that AV makes with the base.

15. June/2020/Paper_33/No.9

(a) A speedboat travels at 84 kilometres per hour.

Change this speed into metres per minute.

..... m/min [2]

(b)

The speedboat starts at X and travels to Y, then to Z and then back to X. Z is due south of X and Y is due west of Z. XY = 39 km and XZ = 21 km.

(i) Calculate YZ.

YZ = km [3]

(ii) Calculate angle YXZ.

Angle
$$YXZ = \dots$$
 [2]

(iii) Find the bearing of Y from X.

..... [1]

16. June/2020/Paper_41/No.7

NOT TO **SCALE**

Palpa allinia The diagram shows the positions of three points A, B and C in a field

(a) Show that BC is 118.1 m, correct to 1 decimal place.

[3]

(b) Calculate angle ABC.

Angle
$$ABC = \dots [3]$$

(c)	The bearing of C from A is 147°.	
	Find the bearing of	
	(i) $A \text{ from } B$,	
		[3]
	(ii) B from C .	
		0.
		[2]
(d)	Mitchell takes 35 seconds to run from A to C .	10
	Calculate his average running speed in kilometres per hour.	
	Co	1/h [2]
		km/h [3]
(e)	Calculate the shortest distance from point B to AC .	
	0.0.	
	•••	
		m [3]

17. June/2020/Paper_42/No.4

The diagram shows two triangles.

(a) Calculate QR.

$$QR = m [3]$$

$$RS = \dots m [4]$$

(c) Calculate the total area of the two triangles.

(a)

The diagram shows triangle ABC with point G inside. CB = 11 cm, CG = 5.3 cm and BG = 6.9 cm.Angle $CAB = 42^{\circ}$ and angle $ACG = 54^{\circ}$.

(i) Calculate the value of x.

(ii) Calculate AC.

Water flows at a speed of 20 cm/s along a rectangular channel into a lake. The width of the channel is 15 cm.

The depth of the water is 2.5 cm.

Calculate the amount of water that flows from the channel into the lake in 1 hour. Give your answer in litres.