<u>Trigonometry – 2022 IGCSE 0580</u>

1. June/2022/Paper-11/No.4

The scale drawing shows the positions of town A and town B. The scale is 1 cm represents 15 km.

(a) Find the actual distance between town A and town B.

.....km [2]

Scale: 1 cm to 15 km

(b) Measure the bearing of town *B* from town *A*.

......[1]

2. June/2022/Paper-11/No.15

NOT TO SCALE

The diagram shows a right-angled triangle, ABC. $AC = 15 \,\mathrm{cm}$ and angle $BAC = 38^{\circ}$.

Calculate BC.

3. June/2022/Paper_12/No.22

NOT TO SCALE

The bearing of B from A is 059° .

Work out the bearing of A from B.

June/2022/Paper_12/No.24

The diagram shows two right-angled triangles, ABD and BCD. $AD = 5 \,\mathrm{m}$, $DC = 14 \,\mathrm{m}$ and angle $BAD = 53^{\circ}$.

Calculate BC.

5. June/2022/Paper_13/No.6

Measure the bearing of point B from point A.

6. June/2022/Paper-22/No.9

The bearing of B from A is 059° .

Work out the bearing of A from B.

.....[2]

7. June/2022/Paper-23/No.18

The bearing of *B* from *A* is x° . The bearing of *A* from *B* is y° . x:y=2:7

Calculate the value of y.

8. June/2022/Paper-23/No.23

Solve the equation $3 \sin x + 3 = 1$ for $0^{\circ} \le x \le 360^{\circ}$.

9. June/2022/Paper_41/No.5(b)

The diagram shows a horizontal container for water with a uniform cross-section.

The cross-section is a semicircle.

The radius of the semicircle is 0.45 m and the length of the container is 4 m.

(i) Calculate the volume of the container.

The greatest depth of the water in the container is 0.3 m. The diagram shows the cross-section.

Calculate the number of litres of water in the container. Give your answer correct to the nearest integer.

10. June/2022/Paper_41/No.7

(a) Calculate angle ACD.

NOT TO SCALE

(b) Show that $BC = 7.05 \,\mathrm{km}$, correct to 2 decimal places.

[3]

(c)	Calculate t	the	shortest	distance	from	B to Δ	AC.
-----	-------------	-----	----------	----------	------	-----------------	-----

.....km [3]

(d) Calculate the length of the straight line BD.

11. June/2022/Paper_42/No.4

ABCD is a trapezium with DC parallel to AB. DC = 6.4 cm, DB = 10.9 cm, angle $CDB = 38^{\circ}$ and angle $DAB = 45^{\circ}$.

(a) Find CB.

(c) Calculate the area of the trapezium.

	cm^2	[3]
--	-----------------	-----

12. June/2022/Paper_43/No.7

The diagram shows a field ABC.

(a) Calculate BC.

$$BC =$$
m [3]

(b) Calculate angle ACB.

(c) A gate, G, lies on AB at the shortest distance from C.

Calculate AG.

$$AG = \dots m [3]$$

(d) A different triangular field PQR has the same area as ABC. $PQ = 90 \,\mathrm{m}$ and $QR = 60 \,\mathrm{m}$.

Work out the two possible values of angle PQR.

13. June/2022/Paper_43/No.10

The diagram shows a cuboid *ABCDEFGH*. CG = 6 cm, AG = 24 cm and AB = 2BC.

(a) Calculate AB.

(b) Calculate the angle between AG and the base ABCD.