<u>Vectors and transformations – 2022 Nov IGCSE 0580 Math</u>

1. Nov/2022/Paper_0580_12/No.9

Work out.

(a)
$$\begin{pmatrix} 6 \\ -3 \end{pmatrix} + \begin{pmatrix} 4 \\ -5 \end{pmatrix}$$

[1]

(b)
$$6\binom{3}{-2}$$

[1]

2. Nov/2022/Paper_0580_21/No.14

Describe fully the **single** transformation that maps triangle *A* onto triangle *B*.

3. Nov/2022/Paper_0580_31/No.2

Triangles A, B and C are shown on the grid.

- (a) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B

[3]

(ii) triangle A onto triangle C.

.....[3]

(b) On the grid,

(i) reflect triangle A in the line y = 0, [2]

(ii) translate triangle A by the vector $\begin{pmatrix} -7\\1 \end{pmatrix}$. [2]

4. Nov/2022/Paper_0580_31/No.8

(a)
$$\mathbf{a} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$

Work out.

(i) 4a

(ii) 2a-b

(i) Write down the coordinates of point P.

- (.....) [1]
- (ii) On the grid, plot point Q at (-4, 2). [1]
- (iii) $\overrightarrow{PR} = \begin{pmatrix} -2\\1 \end{pmatrix}$ On the grid, plot point R. [1]
- (iv) On the grid, draw the line y = 3. [1]

(c)

y =	 [2]

$$y =$$
 [1]

5. Nov/2022/Paper_0580_32/No.6 The diagram shows four flags, F, A, B and C, on a grid.

a)	Des	cribe fully the single transformation that maps	
	(i)	flag F onto flag A ,	
			[3]
	(ii)	flag F onto flag B ,	
			[3]
	(iii)	flag F onto flag C .	
			[2]
b)	On	the grid, draw the image of flag F after a translation by the vector $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$.	[2]

6. Nov/2022/Paper_0580_33/No.8

(a)

- [2]
- Describe fully the **single** transformation that maps shape A onto shape B. (ii)

ii)	Describe fully the single transformation that maps shape A onto shape C.	
		го:
		- 13

(iv) Complete this statement.

The area of shape C is times bigger than the area of shape A.

[2]

(b)

(i) Write \overrightarrow{AB} as a column vector.

(ii)
$$\overrightarrow{BC} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$$

On the grid, plot point C.

[1]

(c)
$$\mathbf{p} = \begin{pmatrix} 5 \\ -12 \end{pmatrix}$$
 $\mathbf{t} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$

Work out

(i) 3p,

(ii) t-p.

- **7.** Nov/2022/Paper_0580_41/No.6
 - $\mathbf{p} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ (a)

Find

- (i) 3q,
- (ii) p-q,

[1]

(.....) [2]

(c)

m the ratio 5 In triangle OGH, M is the midpoint of OH and K divides GH in the ratio 5:2. $\overrightarrow{OG} = \mathbf{g}$ and $\overrightarrow{OH} = \mathbf{h}$.

Find \overrightarrow{MK} in terms of **g** and **h**. Give your answer in its simplest form.

8. Nov/2022/Paper_0580_42/No.4

(a) Describe fully the single transformation that maps

(i)	shape A	onto	shape	В,
-----	-----------	------	-------	----

shape A onto shape C, (ii)

shape A onto shape D. (iii)

(b) On the grid, draw the image of shape A after a reflection in the line y = x + 8. [2]

Find the two possible values of m.

(b)

NOT TO SCALE

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

P is the point on CB such that CP : PB = 3 : 1.

- (i) Find, in terms of a and/or c, in their simplest form,
 - (a) \overrightarrow{AC} ,

$$\overrightarrow{AC} = \dots$$
 [1]

(b) \overrightarrow{CP} ,

$$\overrightarrow{CP} = \dots$$
 [1]

(c) \overrightarrow{OP} .

$$\overrightarrow{OP} = \dots$$
 [1]

(ii) OP and AB are extended to meet at Q.

Find the position vector of Q.

(a)
$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

(i) On the grid, draw and label vector 2a.

[1]

(ii) On the grid, draw and label vector (a-b).

[2]

(b)

NOT TO **SCALE**

OABC is a trapezium with OA parallel to CB.

M is the midpoint of CB and N is the point on AB such that AN: NB = 1:2.

O is the origin, $\overrightarrow{OA} = \mathbf{p}$, $\overrightarrow{OC} = \mathbf{q}$ and $\overrightarrow{CB} = \frac{3}{4}\mathbf{p}$.

(i) Find, in terms of p and/or q, in its simplest form

(a) \overrightarrow{OB}

(b) \overrightarrow{AB}

(c) \overrightarrow{MN} .

$$\overrightarrow{MN} = \dots$$
 [3]

OA and MN are extended to meet at G. (ii)

Find the position vector of G in terms of \mathbf{p} .