<u>Trigonometry - 2023 IGCSE 0580</u>

1. March/2023/Paper 0580/12/No.24

The diagram shows a right-angled triangle.

Show that angle y is 31.9°, correct to 1 decimal place.

March/2023/Paper_0580/22/No.22

The diagram shows a triangular prism ABCDQP of length 7 cm. The cross-section is triangle \overrightarrow{PAB} with $\overrightarrow{PA} = 4$ cm, $\overrightarrow{AB} = 5$ cm and angle $\overrightarrow{PAB} = 90$

Calculate the angle between the line PC and the base ABCD.

March/2023/Paper_0580/32/No.7

The scale drawing shows the positions of three towns, R, S and T, on a map. RS and ST are straight roads between the towns.

The scale is 1 centimetre represents 8 kilometres.

	kı	m [2]
(b)	Another town, V , is on a bearing of 163° from R and on a bearing of 215° from T .	
	Mark the position of V on the map.	[2]
(c)	A man cycles at a constant speed of $24 \mathrm{km/h}$ along the straight road from S to T . After 1 hour and 50 minutes he stops at a café, C .	
	Mark the position of <i>C</i> on the map. You must show all your working.	
	A hotel, H , is on a bearing of 321° from R . Work out the bearing of R from H .	
(d)	A hotel, H , is on a bearing of 321° from R .	[3]
(u)	Whotel, 11, 13 on a bearing of 321 Hom K.	
	Work out the bearing of R from H .	[2]
(e)	Write the scale $1 \text{ cm to } 8 \text{ km}$ in the form $1 : n$.	
	••*	
	1:	[1]

(a) Work out the actual distance between R and S.

4. March/2023/Paper_0580/42/No.10

The diagram shows a quadrilateral ABCD.

AC = 12.3 cm and AD = 16.5 cm.

Angle $BAC = 31^{\circ}$, angle $ABC = 90^{\circ}$ and angle $ACD = 90^{\circ}$.

(a) Show that AB = 10.54 cm, correct to 2 decimal places.

(b) Show that angle $DAC = 41.80^{\circ}$ correct to 2 decimal places.

[2]

[2]

(c) Calculate BD.	
(d) Calculate angle <i>CBD</i> .	$BD = \dots $ [3]
	idoe

(e) Calculate the shortest distance from C to BD.

..... cm [4]

March/2023/Paper_0580/42/No.12

(a) Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$.

(b) Find x when $\tan x = \frac{1}{\sqrt{3}}$ and $0^{\circ} \le x \le 360^{\circ}$.

[2]

June/2023/Paper_0580/11/No.22

The diagram shows a right-angled triangle.

Calculate the value of *y*.

7. June/2023/Paper_0580/12/No.9

The scale drawing shows the positions of town A and town B.

June/2023/Paper_0580/21/No.18

The diagram shows the position of three towns, U, V and W. U is due west of V and angle $UVW = 125^{\circ}$.

Calculate the bearing of U from W.

June/2023/Paper_0580/21/No.19

(a) On the diagram, sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$.

(b) Solve the equation $5\cos x + 3 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

[2]

10. June/2023/Paper_0580/22/No.21

Solve the equation $5 \sin x = -3$ for $0^{\circ} \le x \le 360^{\circ}$.

11. June/2023/Paper_0580/42/No.7

The diagram shows the straight roads between town A, town B and town C. $AC = 60 \,\mathrm{km}$, $CB = 87 \,\mathrm{km}$ and B is due east of A. The bearing of C from A is 038° .

(a) Show that angle $ACB = 95.1^{\circ}$, correct to 1 decimal place.

(b) Without stopping, a car travels from town A to town C then to town B, before returning directly to town A.

The total time taken for the journey is 3 hours 20 minutes.

Calculate the average speed of the car for this journey. Give your answer in kilometres per hour.

..... km/h [6]

12. June/2023/Paper_0580/42/No.10

(a)

NOT TO **SCALE**

ABCDEFGH is a cuboid with a square base of side x cm. $CG = 20 \,\mathrm{cm}$ and $AG = 28 \,\mathrm{cm}$.

Calculate the value of x.

(b)

The diagram shows a different cuboid JKLMNPQR.

MR = 30 cm correct to the nearest centimetre.

 $KR = 37 \,\mathrm{cm}$ correct to the nearest centimetre.

Calculate the lower bound of the angle between KR and the base JKLM of the cuboid.

13. June/2023/Paper_0580/43/No.5

(a)

ABC is a scalene triangle on horizontal ground.

Palpacalitical AYX is a straight vertical post, held in place by two straight wires XB and YC

 $AC = 4.8 \text{ m}, BC = 5.6 \text{ m} \text{ and angle } ACB = 20.4^{\circ}.$

(i) Calculate AB.

(ii) Angle $XBA = 64^{\circ}$.

Calculate AX.

$$AX = \dots m [2]$$

(iii) $AY = 2.9 \,\mathrm{m}$.

Calculate the area of triangle YAC.

In triangle PQR, M is the midpoint of PQ. Papacambidos RM = 8 cm, angle $PRM = 30^{\circ}$ and angle $RMQ = 75^{\circ}$.

Calculate PQ.

17

PQ = cm [5]