
Algebra and graphs – 2023 Nov IGCSE 0580

- 1. Nov/2023/Paper_0580/11/No.3, 0580/13/No.3 Complete these statements.
 - (a) When $x = \dots, x+3 = 8$.

[1]

(b) When 7y = 63, $10y = \dots$

[1]

Factorise completely.

42mk - 35m

.....[2]

Simplify.

(a) $n^5 \times n$

.....[1]

(b) $8x^6 \div 2x^2$

Palpacambildoe

NOV	/2023/Pape	1_0280/1	.2/NO.3			
The	se are the f	irst four	terms in	a sequence.		
	-3	4	11	18		
(a)	Find the r	ext term.				
						[1
(b)	Explain h	ow you v	vorked o	ut vour answer.		

5. Nov/2023/Paper_0580/12/No.9, 0580/22/No.3

$$v = u + at$$

Find the value of v when u = 30, a = -2 and t = 7.

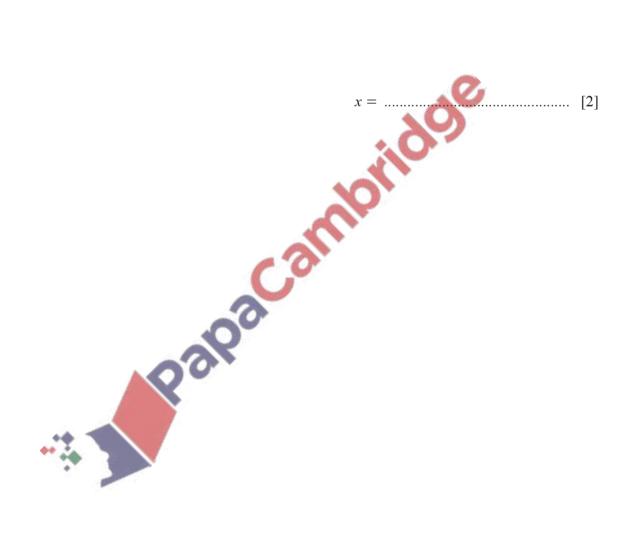
 $v = \dots$ [2]

Expand and simplify.

$$2(t+w)+3(w-t)$$

.....[2]

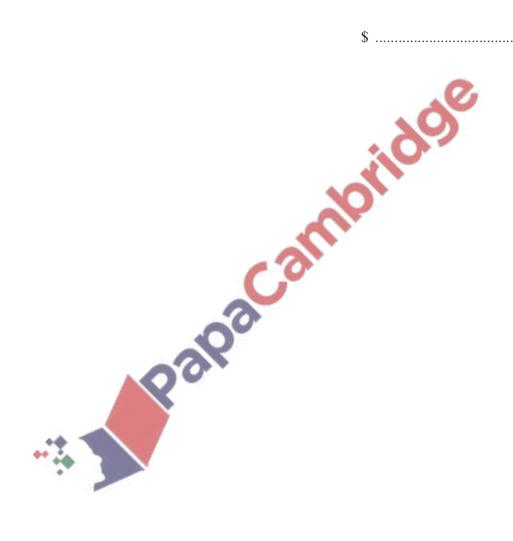
7. Nov/2023/Paper_0580/13/No.11
--


Factorise completely. $15v^2 - 3v$

.....[2]

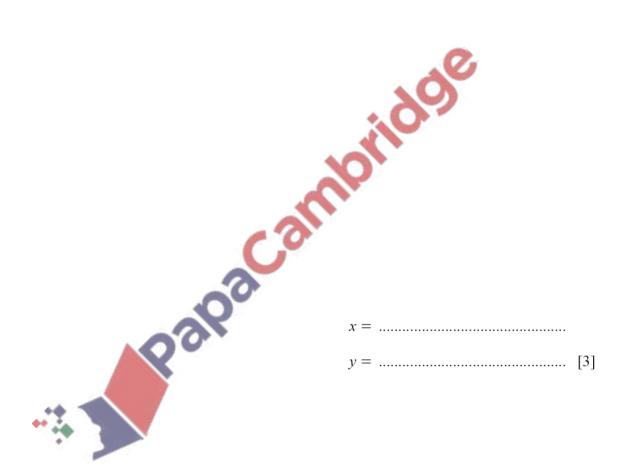
Solve the equation.

$$5x + 7 = 9x - 3$$



Nov/2023/Paper 0580/13/No.18

A bar of chocolate costs \$3 and a bag of sweets costs \$5.


Write down an expression for the total cost, in dollars, of x bars of chocolate and y bags of sweets.

\$[2]

Solve the simultaneous equations. You must show all your working.

$$3x + 5y = 23$$
$$6x - 4y = 11$$

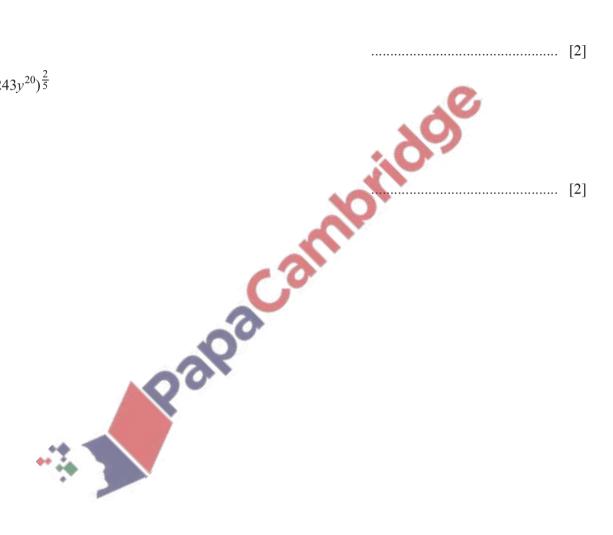
Factorise completely.

(a) 42mk - 35m

.....[2]

(b) $h^2 - 144$

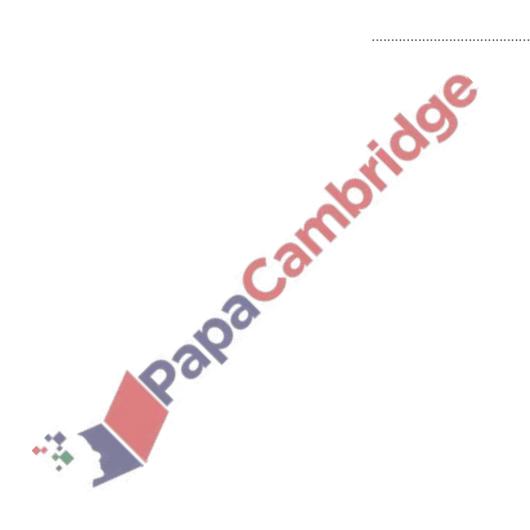
......[1]

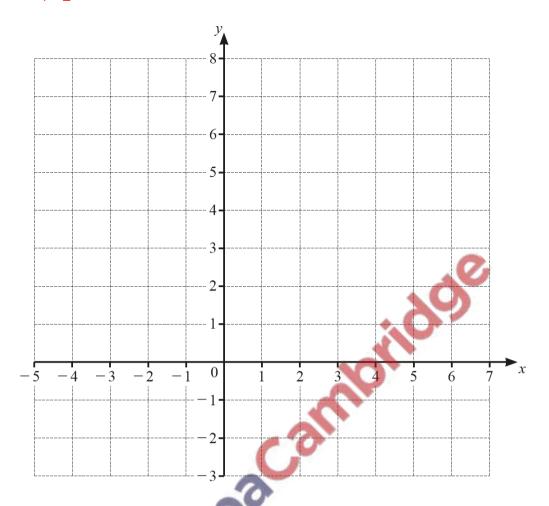


Simplify.

- (a) $n^5 \times n$
- **(b)** $8x^6 \div 2x^2$

(c) $(243y^{20})^{\frac{2}{5}}$





Solve.

$$4(2x-3) \ge 43 + 3x$$

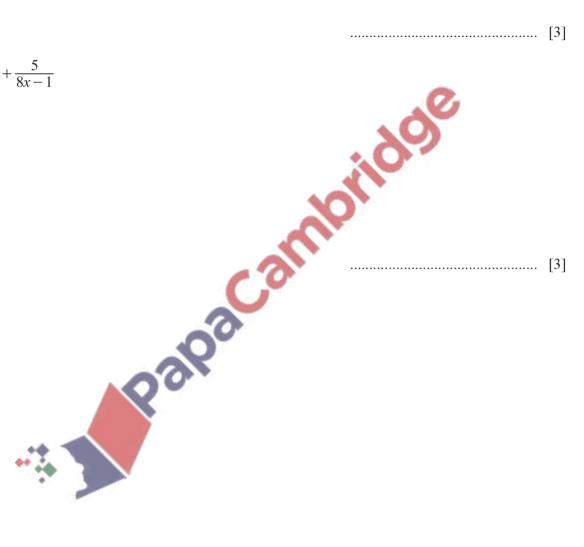
.....[3]

By shading the **unwanted** regions of the grid, draw and label the region R which satisfies these inequalities.

$$y \ge x + 2$$

[5]

$$P = 2w + 2h$$

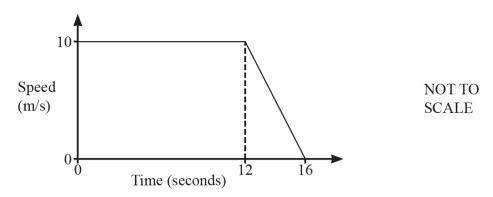

w = 11 and h = 9.5, both correct to 2 significant figures.

Find the lower bound and the upper bound for P.

Write as a single fraction in its simplest form.

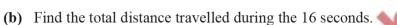
(a)
$$\frac{10x^2 - 60x}{x^2 - x - 30}$$

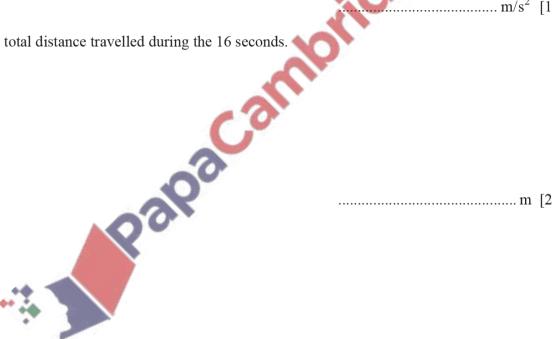
(b)
$$\frac{7}{x+3} + \frac{5}{8x-1}$$



Expand and simplify.

$$2(t+w)+3(w-t)$$


.....[2]



The diagram shows a speed–time graph for 16 seconds of a car journey.

(a) Find the deceleration of the car in the final 4 seconds.

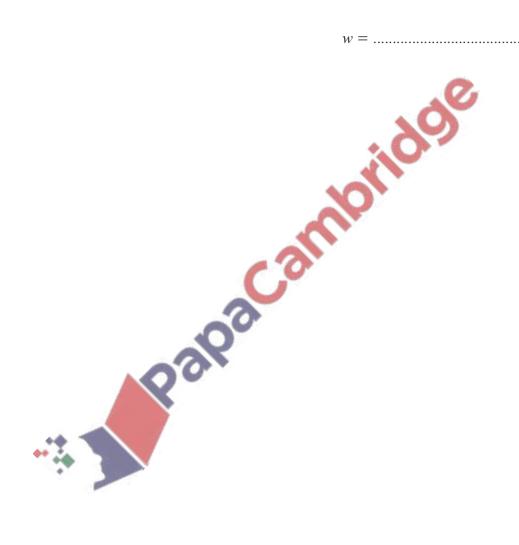
17. NOV/2023/1 abc1 0300/22/110.13	19.	Nov/2023/Paper_	0580/22/No.13
------------------------------------	-----	-----------------	---------------

(a) $3^{3p} \times 3^{2p} = 729$

Find the value of p.

$$p = \dots$$
 [2]

(b) Simplify.


$$(32x^{10})^{\frac{1}{5}}$$

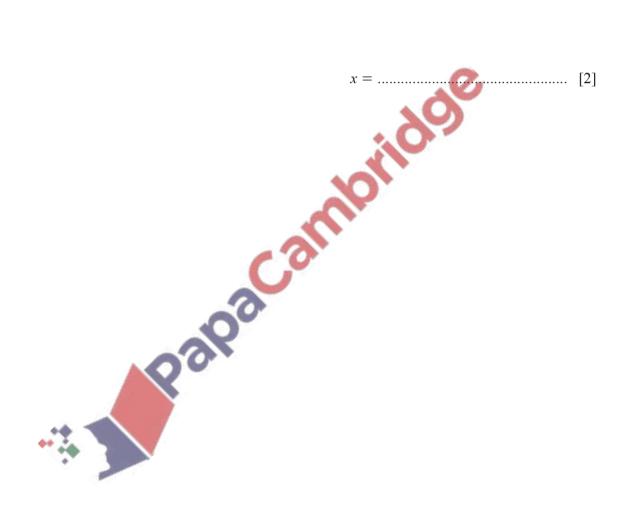
$$y = 2w^2 - x$$

Rearrange the formula to make w the subject.

w = [3]

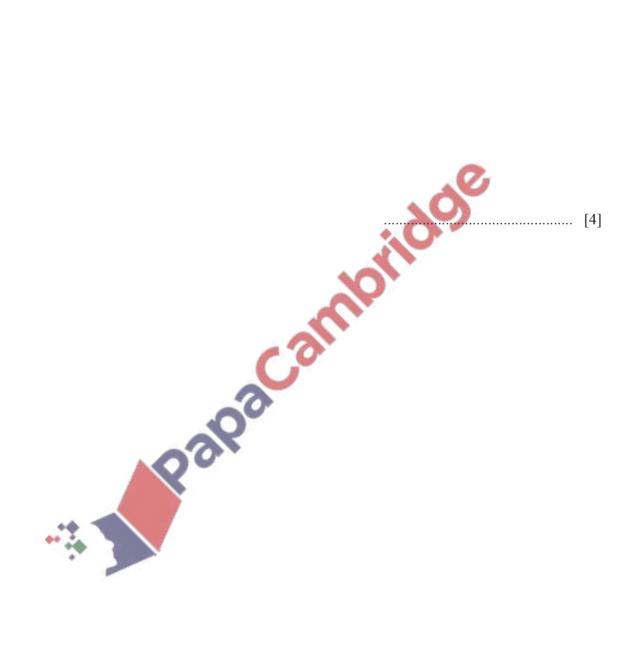
Find the *n*th term of each sequence.

(a) $11, 8, 5, 2, -1, \dots$


......[2]

(b) 1, 5, 25, 125, 625, ...

Palpacainthinido Palpac

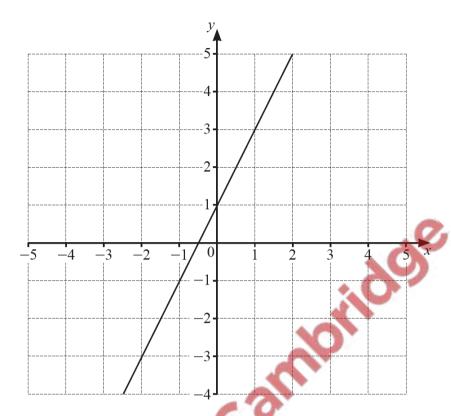

x is inversely proportional to the square root of w. When w = 16, x = 3.

Find x in terms of w.

Simplify.

$$\frac{ax-2a-x+2}{a^2-1}$$

The derivative of $2ax^7 + 3x^k$ is $42x^6 + 15x^{k-1}$.


Find the value of a and the value of k.

$$k = \frac{1}{2}$$

$$P = \frac{2wy^2}{3}$$

Find the positive value of y when P = 108 and w = 8.

The graph of y = 2x + 1 is drawn on the grid.

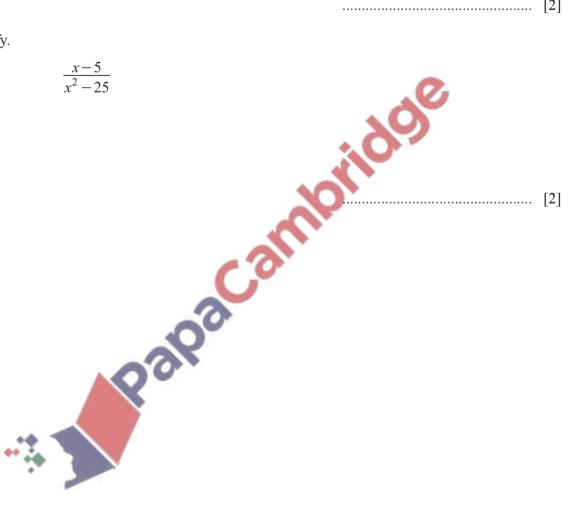
By shading the unwanted regions of the grid, find and label the region R which satisfies these inequalities.

$$y \ge 2x + 1$$
 $y \ge 1$ $4x + 3y < 12$ [4]

$$T = \sqrt{3d - e}$$

Rearrange the formula to make d the subject.

28. Nov/2023/Paper_0	0580/23/No.17
----------------------	---------------

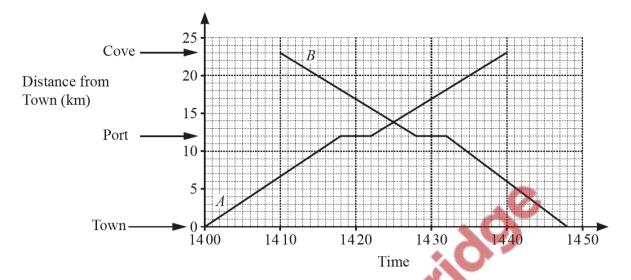

(a) Simplify.

$$(64y^{27})^{\frac{2}{3}}$$

......[2]

(b) Simplify.

$$\frac{x-5}{x^2-25}$$



(x+a)(x+2)(2x+3) is equivalent to $2x^3 + bx^2 + cx - 18$.

Find the value of each of a, b and c.

	Notion	
23/93	a =	
	$b = \dots$ $c = \dots$	[3]

A railway line has three stations, Town, Port and Cove. Train A leaves Town for Cove and train B leaves Cove for Town. Both trains stop at Port.

(a) Write down the time that train B leaves Cove.

.....[1]

(b) Write down how long train A stops at Port.

- min [1]
- (c) How many more minutes does train A take to complete the whole journey than train B?
 - min [2]
- (d) Write down the time that the two trains pass each other.
-[1]
- (e) Work out the average speed of train A between Town and Cove in kilometres per hour.

.....km/h [3]

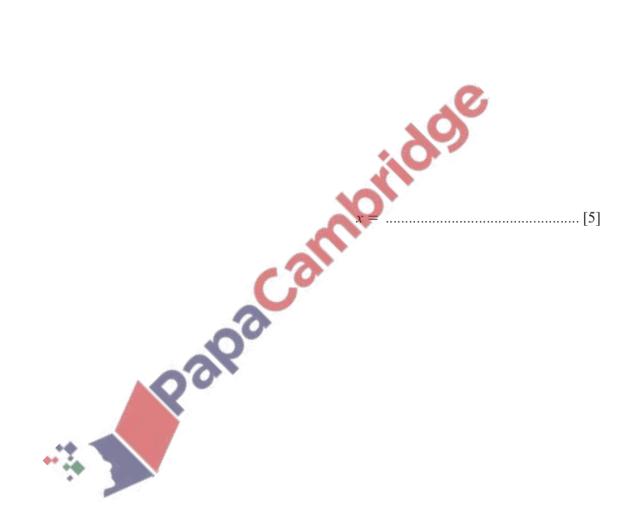
31. Nov/2023/Paper	_0580/31/No.7
---------------------------	---------------

(a) Simplify. 5a+3b+2a-4b

(b) P = 8x + 3y

Find the value of x when P = 21 and y = -5.

(c) Make v the subject of the formula $S = kv^2$.

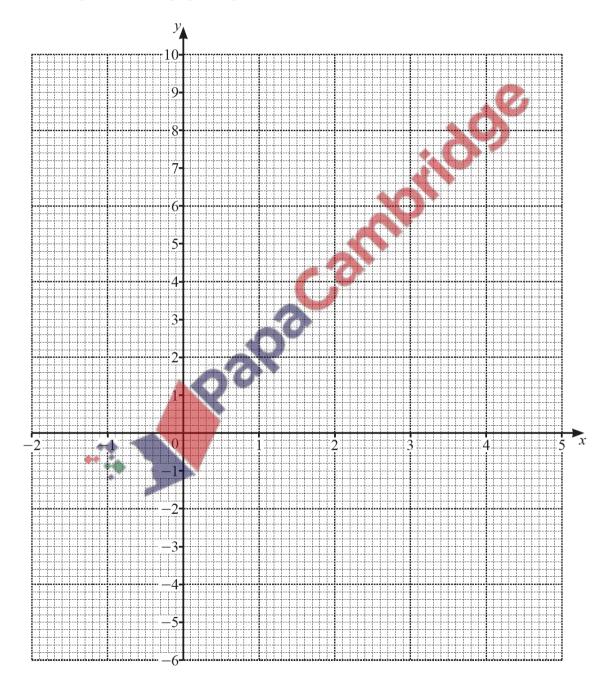

$$v = \dots$$
 [2]

(d) Multiply out and simplify.

$$(x-3)(x+5)$$

(e) Nasser has *x* marbles.
Selina has 15 more marbles than Nasser.
Hanif has 3 times as many marbles as Selina.
In total they have 150 marbles.

Find the value of x.



(a) Complete the table of values for $y = x^2 - 4x - 2$.

х	-2	-1	0	1	2	3	4	5
У		3	-2	-5		-5	-2	3

[2]

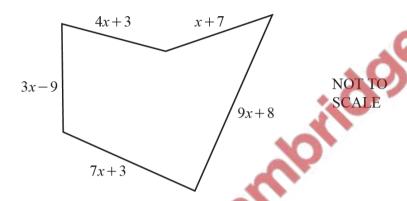
(b) On the grid, draw the graph of $y = x^2 - 4x - 2$ for $-2 \le x \le 5$.

[4]

(c) Use your graph to solve the equation $x^2 - 4x - 2 = 0$.

 $x = \dots$ or $x = \dots$ [2]

(a) Simplify.


$$a + 4a - 3a$$

Г1
 L±.

(b) Simplify.

$$8b-4\times7b$$

(c)

The perimeter of this shape is equal to the perimeter of a square.

Find an expression for the length of one side of the square. Give your answer in its simplest form.

.....[4]

(d) Victoria buys 5 cups of tea and 4 cakes for \$15.69. Isabella buys 3 cups of tea and 7 cakes for \$17.97.

Write down a pair of simultaneous equations and solve them to find the cost of one cup of tea and the cost of one cake.

You must show all your working.

	abildoe	
Palpaca	Tea \$	[6]
•		

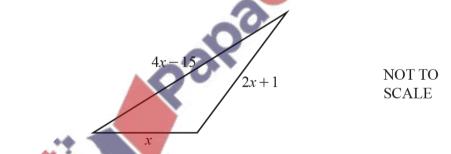
34. Nov/2023/Paper 0580/33/No.7 These are the first four diagrams in a sequence. The diagrams are made using dots and lines. Diagram 2 Diagram 3 Diagram 4 Diagram 1 (a) Complete the table. Diagram 1 2 3 Number of small squares 2 4 6 Number of dots 6 9 12 Number of lines 7 12 [2] **(b)** Complete this statement. A diagram in this sequence cannot have 51 small squares because [1] (c) An expression for the number of dots in Diagram n is 3n+3. Which diagram has 249 dots?[2] (d) (i) Find an expression, in terms of n, for the number of lines in Diagram n.[2] Find the number of lines in Diagram 41.

36

.....[1]

35.	Nov/2023/Pap	er_0580/33/No.8
•••	1101/2023/1 ap	ci_0300/33/1 1 0.0

(a) Expand and simplify.


(i)
$$4(x+3)+2(x-1)$$

(ii)
$$(m-6)(m-4)$$

(b) Make t the subject of the formula p = 4t + 3.

$$t = \dots$$
 [2]

(c) In this part, all measurements are in centimetres.

The perimeter of this triangle is 49 cm.

Work out the value of x.

$$x =$$
 [3]

36.	Nov/2023	R/Paner	0580	/41/No.2
00.	1400/202	J/ Lapci_	_0500	/ - 1/ 110.2

$$(a) s = \frac{1}{2}at^2$$

Find the value of s when a = 9.8 and t = 20.

$$s = \dots [2]$$

$$5(4y-3) = 15$$

$$3(5x-8)-2(3x-7)$$

(d) Rearrange $A = 2b^2 - 3c^3$ to make c the subject.

$$c = \dots [3]$$

(e) Factorise completely.

$$6pq - 4q - 3p + 2$$

37. Nov/2023/Paper 0580/41/No.6

(a)

Sequence	1st term	2nd term	3rd term	4th term	5th term	nth term
A	-7	-3	1	5		
В	7	13	23	37		
С	$\frac{2}{27}$	3 81	<u>4</u> 243	<u>5</u> 729		

Complete the table for the three sequences.

(b) In a sequence, the sum of the first 49 terms is 7644. The sum of the first 50 terms is 7975.

Find the 50th term of this sequence.

..... [1]

[10]

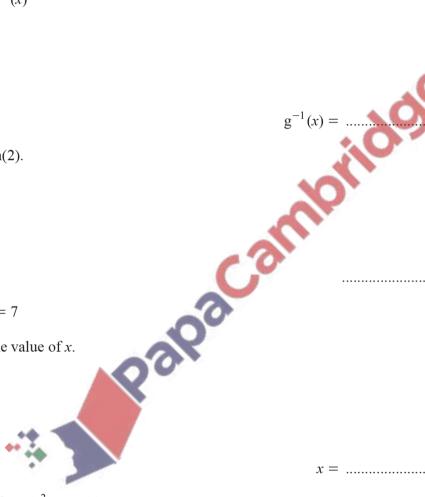
38. Nov/2023/Paper 0580/41/No.9

$$f(x) = (3x+1)(x+5)(x-4)$$
 $g(x) = 2x-3$ $h(x) = 4^{2x-1}$

$$g(x) = 2x - 3$$

$$h(x) = 4^{2x-}$$

- (a) Find
 - (i) f(0)


(ii)
$$g^{-1}(x)$$

$$g^{-1}(x) = \dots [2$$

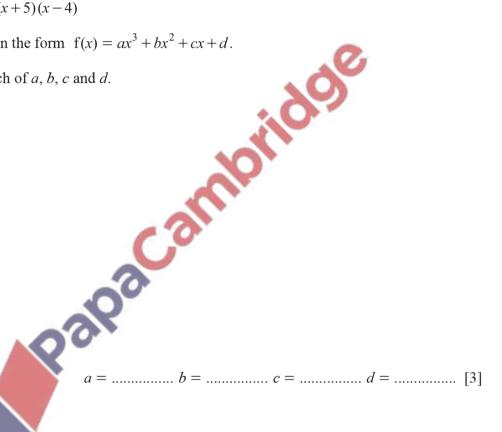
(iii) gh(2).

(b) g(2x) = 7

Find the value of x.

$$x = \dots [2]$$

(c) Simplify $g(x^2) + gg(x) + 1$.

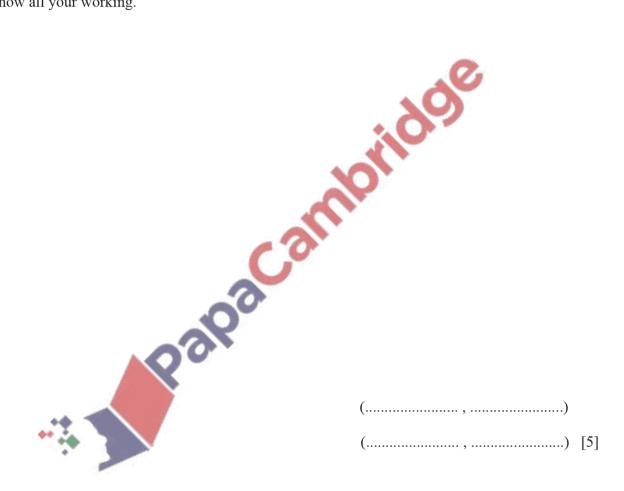

(d) Find $h^{-1}(16)$.

 [2]
 [-]

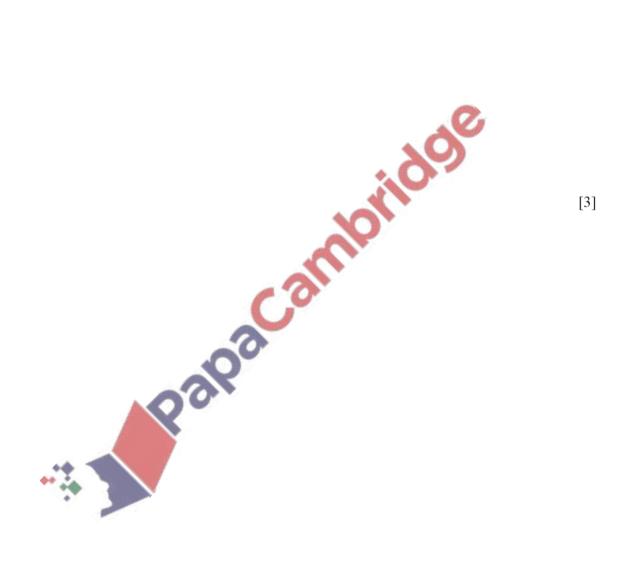
(e)
$$f(x) = (3x+1)(x+5)(x-4)$$

This can be written in the form $f(x) = ax^3 + bx^2 + cx + d$.

Find the value of each of a, b, c and d.


39.	Nov/2023/P	aper 0580	/41/No.11

(a) Differentiate $x^3 - 4x^2 - 3x$.

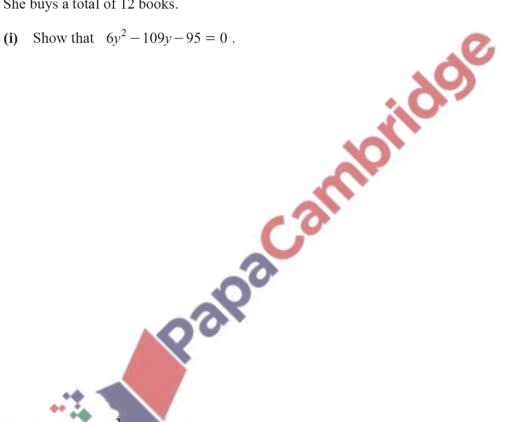

																														1	2	,	
																													L	-			

(b) A curve has equation $y = x^3 - 4x^2 - 3x$.

Work out the coordinates of the two stationary points. Show all your working.

(c) Determine whether each stationary point is a maximum or a minimum. Show all your working.

40.	Nov/2023/Pa	aper 0580	/42/No.5
	,,		, ,

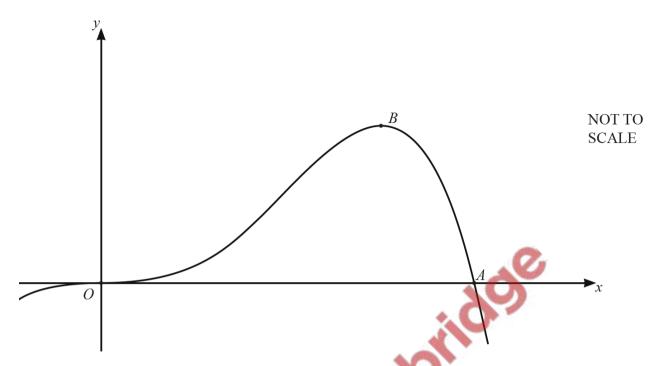

(a) In a shop the cost of a fiction book is x and the cost of a reference book is (x+2). The cost of 11 fiction books is the same as the cost of 10 reference books.

Find the value of x.

$$x =$$
 [2]

(b) In another shop, the cost of a fiction book is v and the cost of a reference book is v+2. Maria spends \$95 on fiction books and \$147 on reference books. She buys a total of 12 books.

(i) Show that $6v^2 - 109v - 95 = 0$.


(ii) Factorise

[4]

(iii) Find the value of y.

$$y = \dots [1]$$

41. Nov/2023/Paper 0580/42/No.9

The diagram shows a sketch of the graph of $y = 4x^3 - x^4$. The graph crosses the x-axis at the origin O and at the point A. The point B is a maximum point.

(a) Differentiate $4x^3 - x^4$.

.....[2]

(b) Find the coordinates of *B*.

(.....) [3]

(c) Find the gradient of the graph at the point A.

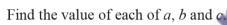
42. Nov/2023/Paper 0580/42/No.11

$$f(x) = 1 - 3x$$

$$g(x) = (x-1)^2$$

$$f(x) = 1 - 3x$$
 $g(x) = (x - 1)^2$ $h(x) = \frac{3}{x}, x \neq 0$

(a) Find g(3).



(b) Find f(x-2), giving your answer in its simplest form.

(c) Find $f^{-1}(x)$.

(d) $gf(x) - g(x)f(x) = 3x^3 + ax^2 + bx + c$

 $a = \dots$

$$c = \dots$$
 [5]

(e) Find h(x) - f(x), giving your answer as a single fraction in its simplest form.

(f) $h(x^n) = 3x^7$

Find the value of n.

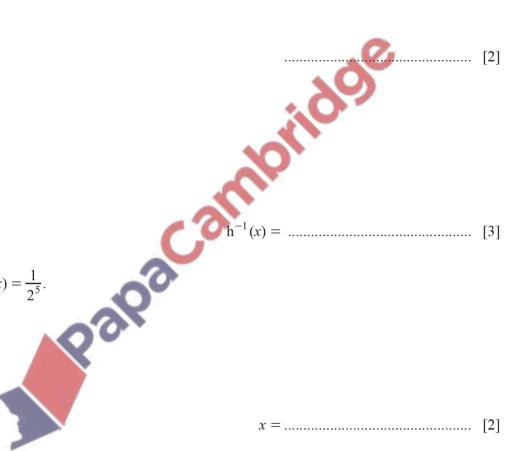
43. Nov/2023/Paper 0580/43/No.6

$$f(x) = 5x - 3$$

$$g(x) = 64^x$$

$$g(x) = 64^x$$
 $h(x) = \frac{2}{x+1}, \quad x \neq -1$

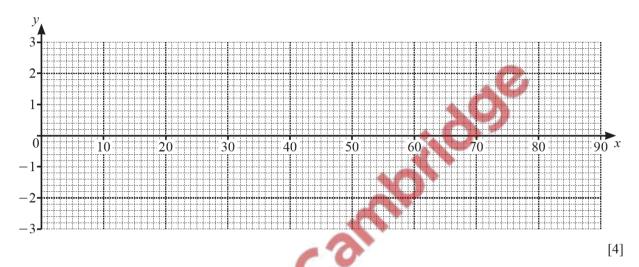
- (a) Find the value of
 - (i) f(2)


(ii) gf(0.5).

(b) Find $h^{-1}(x)$.

(c) Find x when $g(x) = \frac{1}{2^5}$.

(d) Write as a single fraction in its simplest form $\frac{1}{f(x)} - h(x)$.


44. Nov/2023/Paper_0580/43/No.7

(a) Complete the table of values for $y = 3 \cos 2x^{\circ}$. Values are given correct to 1 decimal place.

x	0	10	20	30	40	45	50	60	70	80	90
у	3.0	2.8	2.3	1.5	0.5		-0.5		-2.3		-3.0

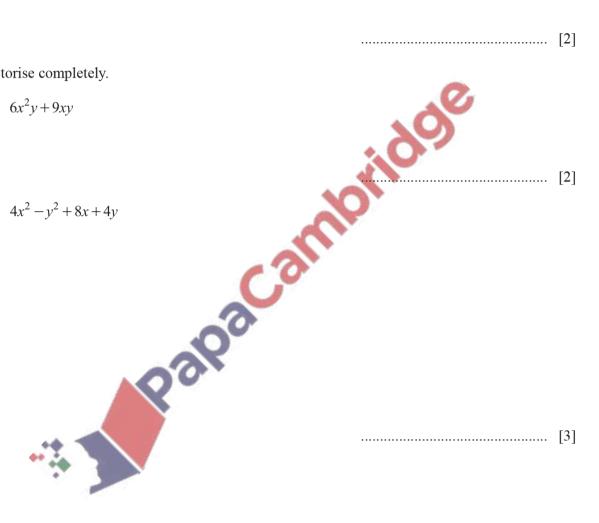
[3]

(b) Draw the graph of $y = 3\cos 2x^{\circ}$ for $0 \le x \le 90$.

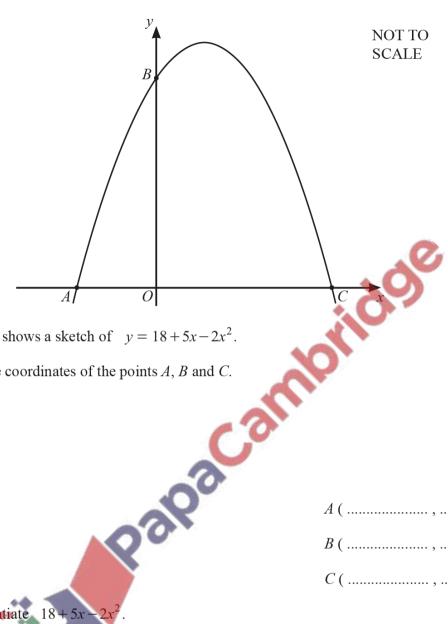
(c) Use your graph to solve the equation $3\cos 2x^{\circ} = -2$ for $0 \le x \le 90$.

x = [1]

(d) By drawing a suitable straight line, solve the equation $120\cos 2x^\circ = 80 - x$ for $0 \le x \le 90$.



45. Nov/2023/Paper_0580	/43/No.10
-------------------------	-----------


(a) Expand and simplify.

$$4(2x-1)-6(3-x)$$

- **(b)** Factorise completely.
 - (i) $6x^2y + 9xy$
 - (ii) $4x^2 y^2 + 8x + 4y$

46. Nov/2023/Paper 0580/43/No.11

The diagram shows a sketch of $y = 18 + 5x - 2x^2$.

(a) Find the coordinates of the points A, B and C.

A	(,)
---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

(b) Differentiate 18-

(c) Find the coordinates of the point on $y = 18 + 5x - 2x^2$ where the gradient is 17.