Vectors and transformations - 2023 Nov IGCSE 0580

- 1. Nov/2023/Paper_0580/13/No.10

 - $\mathbf{a} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} \qquad \qquad \mathbf{b} = \begin{pmatrix} -6 \\ 1 \end{pmatrix} \qquad \qquad \mathbf{c} = \begin{pmatrix} 13 \\ -2 \end{pmatrix}$

Work out.

(a) a+b

(b) 3**c**

2. Nov/2023/Paper_0580/22/No.26

The diagram shows a parallelogram OPQT. The position vector of P is **a** and the position vector of T is **b**.

K is on PQ so that PK : KQ = 3 : 1. The lines OK and TQ are extended to meet at X.

Find the position vector of X in terms of \mathbf{a} and \mathbf{b} . Give your answer in its simplest form.

3. Nov/2023/Paper_0580/23/No.10

$$\overrightarrow{AB} = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$$

(a) Find $3\overrightarrow{AB}$.

- **(b)** Find $|\overrightarrow{AB}|$.
- $|\vec{AB}| = \dots$

4. Nov/2023/Paper_0580/31/No.6

(a) Describe fully the **single** transformation that maps triangle A onto triangle B.

[2]

(b) Describe fully the single transformation that maps triangle A onto triangle C.

(c) On the grid, draw the image of triangle A after a reflection in the line y = 6. [2]

5. Nov/2023/Paper_0580/32/No.9

Triangles A, B and C are shown on the grid.

(a) Describe fully the **single** transformation that maps triangle A onto triangle B.

(b) Describe fully the single transformation that maps triangle A onto triangle C.

[3

- (c) On the grid, translate triangle A by the vector $\begin{pmatrix} 6 \\ -4 \end{pmatrix}$. [2]
- (d) On the grid, reflect triangle A in the line y = -2. [2]

6. Nov/2023/Paper_0580/41/No.1

(a)	Des	cribe fully the single transformation that maps	
	(i)	shape A onto shape B	
	(ii)	shape A onto shape C .	[2]
			[3]
(b)	On	the grid, draw the image of	
	(i)	shape A after a reflection in the line $y = 2$	[2]
	(ii)	shape A after a reflection in the line $y = 2$ shape A after an enlargement, scale factor -2 , centre $(0, 0)$.	[2]
		Palpacamio	

7. N	ov/2023/Paper_	_0580/41/No.10
------	----------------	----------------

(a) ABC is a triangle.

B is the point (1, -10), A is the point (4, 14) and $\overrightarrow{CA} = \begin{pmatrix} -11 \\ 8 \end{pmatrix}$.

Find the coordinates of *C*.

(.....) [2]

(ii) Find \overrightarrow{BA} .

Papacamining (S)

(iii) Find $|\overrightarrow{CA}|$.

(b)

OMN is a triangle.

$$\overrightarrow{OM} = \mathbf{a}$$
 and $\overrightarrow{ON} = \mathbf{b}$.

Cambridge R is a point on MN such that MR : RN = 3 : 2.

ORT is a straight line.

(i) Show that $\overrightarrow{OR} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$.

(ii) (a)
$$\overrightarrow{NT} = 4\mathbf{a} + k\mathbf{b}$$
 and $\overrightarrow{OT} = c\overrightarrow{OR}$.

Find the value of k and the value of c.

$$k = \dots \qquad c = \dots \qquad [4]$$

(b) Find \overrightarrow{MT} .

8. Nov/2023/Paper_0580/42/No.1

- (a) (i) Translate triangle T by the vector $\begin{pmatrix} -7\\1 \end{pmatrix}$. Label the image K. [2]
 - (ii) Describe fully the single transformation that maps triangle K onto triangle T.

[1]

- **(b)** Reflect triangle T in the line y = 4. [2]
- (c) Rotate triangle T through 90° clockwise about (0, 0). [2]
- (d) (i) Enlarge triangle T by scale factor $-\frac{1}{2}$, centre (0, 0). Label the image P. [2]
 - (ii) Describe fully the **single** transformation that maps triangle P onto triangle T.

9. Nov/2023/Paper_0580/42/No.12

NOT TO **SCALE**

O is the origin (0, 0), A is the point (8, 1) and B is the point (2, 5).

- (a) Write as column vectors.
 - \overrightarrow{OB} **(i)**
 - (ii) \overrightarrow{AB}

- [1]
- $\overrightarrow{OB} =$ [1]
- **(b)** Find the equation of the line AB. Give your answer in the form y = mx + c.

$$y =$$
 [3]

(c)	Find the equation of the perpendicular bisector of AB.
	Give your answer in the form $y = mx + c$.

(d) The line AB meets the y-axis at P. The perpendicular bisector of AB meets the y-axis at Q.

Find the length of PQ.

10. Nov/2023/Paper_0580/43/No.3

(a) Describe fully the single transformation that maps triangle A onto triangle B.

- **(b)** Draw the image of triangle A after
 - (i) a reflection in the line y = 1 [2]
 - (ii) a translation by the vector $\begin{pmatrix} 5 \\ -7 \end{pmatrix}$ [2]
 - (iii) an enlargement, scale factor 2, centre (-4, 5). [2]