Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education (9-1)

MATHEMATICS
 0626/04

Paper 4
October/November 2017
MARK SCHEME
Maximum Mark: 84

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)	4	2	M1 for $\frac{11-3}{2-0}$ oe soi
1(b)	$[y=] 4 x+3$ oe	1	FT from their gradient
2	35, 70, 75	4	M1 for sum of angles in a triangle $=180$ soi or for 3 angles that fit two of the conditions M1 for $2 x$ and $x+40$ oe M1 for $x+2 x+x+40=180$ soi
3	Correct angle bisector with correct arcs shown	2	B1 for angle bisector or correct arcs
4(a)	7	1	
4(b)	3, 7, 31 (with no extras)	2	B1 for two correct (with no extras) or for answer $[n=] 2,3,5$ only or M1 for 3, 7, 15, 31 seen
4(c)	Valid reason	1	e.g. Because 63 is divisible by 3 or 7 or 9 or 21 e.g. because 63 has more than 2 factors
5(a)	$\frac{2}{5}, \frac{4}{7}, \frac{3}{7}, \frac{4}{7}, \frac{3}{7}$ correctly placed	2	B1 for $\frac{2}{5}$ or $\frac{3}{7}$ on a 'does not stop' branch
5(b)	$\frac{6}{35} \text { oe }$	2	$\text { M1 for their } \frac{2}{5} \times \text { their } \frac{3}{7}$
6(a)	$(x+3)(x-6)$	2	$\begin{aligned} & \text { M1 for } x(x-6)+3(x-6) \\ & \text { or } x(x+3)-6(x+3) \\ & \text { or for }(x+a)(x+b) \text { where } a+b=-3 \\ & \text { or } a b=-18 \end{aligned}$
6(b)	$x=-3, x=6$	1	FT their factors
7	60	4	M1 for time for A to $\mathrm{B}=125 \div 50$ soi M1 for time for B to $\mathrm{C}=4-$ their 2.5 M1 for $90 \div$ their 1.5
8	$x^{2}+7 x-4 x-28$	M1	Must have at least 3 terms correct or $x^{2}+3 x-28$, must have at least 2 terms correct
	$3 x^{2}-3 x$	B1	
	$\begin{aligned} & x^{2}+7 x-4 x-28+3 x^{2}-3 x \\ & =4 x^{2}-28=4\left(x^{2}-7\right) \end{aligned}$	A1	

Question	Answer	Marks	Partial Marks
9(a)(i)	18	1	
9(a)(ii)	14	2	B1 for 26 or 12 or M1 for attempt at difference of quartiles
9(b)	15	3	B2 for answer 85 OR M1 for $[t<30]=102$ or $[t>30]=18$ seen M1 for $\frac{120-\text { their } 102}{120}$ soi
10(a)	$3 k^{7}$	1	
10(b)	$\frac{5}{2} \text { oe }$	2	M1 for $\frac{2}{5}$ seen or $\left(\frac{25}{4}\right)^{\frac{1}{2}}$
10(c)	$\frac{1}{3}$	1	
11	$12 x^{3}$	4	M1 for $2 x \times 2 x \times 2 x$ M1 for $\frac{1}{3} \times 2 x \times 2 x \times(5 x-2 x)$ M1 for their $8 x^{3}-$ their $4 x^{3}$
12	270	3	B2 for $\left(\frac{9}{6}\right)^{3}$ or $\left(\frac{6}{9}\right)^{3}$ oe soi or B1 for $\frac{9}{6}$ or $\frac{6}{9}$ oe soi
13	$\frac{26}{33}$	3	M2 for $x=\frac{78}{99}$ or M1 for $x=0.78$ and $100 x=78.78$ soi
14(a)	5	1	
14(b)	36700	1	
14(c)	6	1	
15(a)	$\left(\begin{array}{rr} 12 & 9 \\ 18 & 21 \end{array}\right)$	1	
15(b)	10	1	
15(c)	$\frac{1}{10}\left(\begin{array}{rr}7 & -3 \\ -6 & 4\end{array}\right)$ oe	1	FT from their determinant.

Question	Answer	Marks	Partial Marks
16	$\left(-1 \frac{1}{2}, 1 \frac{1}{2}\right),(2,5)$	5	M1 for $2 x^{2}-3=x+3$ M1 for $2 x^{2}-x-6=0$ M1 for $(2 x+3)(x-2)=0$ A1 FT from their factorised quadratic, for $x=-1 \frac{1}{2}$ or 2 After A0, SC1 for their x co-ordinates being +3 more than their y co-ordinates
17(a)	Total of flour in grams is $250 x+375 y$	M1	
	$\begin{aligned} & 250 x+375 \leqslant 6000 \\ & \rightarrow 2 x+3 y \leqslant 48 \end{aligned}$	A1	
17(b)	$\begin{aligned} & x+y \leqslant 20 \mathrm{oe} \\ & y \geqslant 3 \mathrm{oe} \end{aligned}$	2	B1 for each or SC1 for $x+y * 20$ and $y^{*} 3$ where * can be an equals or any inequality sign.
17(c)	Correct region clearly identified	4	B3 for three correct boundaries $2 x+3 y=48, x+y=20, y=3$ or $\mathbf{B} \mathbf{2}$ for two correct boundaries or B1 for one correct boundary
17(d)	116	2	M1 for $x=12$ and $y=8$ identified or for $5 x+7 y$ for integer (x, y) in their region
18	$\begin{aligned} & g=3 \\ & h=-5 \end{aligned}$	4	B3 for one correct OR M1 for $2 x^{3}-2 g x^{2}+x^{2}-g x-15 x+15 g$ or $(x-g)(2 x-5)(x+3)$ M1 for $2 x^{3}+h x^{2}-18 x-9 h$ or $(x-3)(x+3)(2 x+h)$
19(a)	$2 \mathbf{q}-2 \mathbf{p}$ oe	3	M1 for $\overrightarrow{D A}=-2 \mathbf{p}$ or $\overrightarrow{A X}=2 \mathbf{q}$ or $\overrightarrow{B X}=-\mathbf{q}$ M1 for $\overrightarrow{D X}=\overrightarrow{D A}+\overrightarrow{A X}$ oe soi
19(b)	$\begin{aligned} & \overrightarrow{D Y}=3 \mathbf{q}-3 \mathbf{p}[=3(\mathbf{q}-\mathbf{p})] \\ & \text { or } \overrightarrow{X Y}=\mathbf{q}-\mathbf{p} \end{aligned}$	M1	
	which is a multiple of $\overrightarrow{D X}$ and X is on $D X$ and on $D Y$ oe	A1	

Question	Answer	Marks	Partial Marks
20	243 and 297	$\mathbf{3}$	B2 for one correct or M1 for 180 +63 or $360-63$ oe or M1 for sketch of sine curve for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ seen
21	$\frac{2}{\sqrt{27}}=\frac{2}{3 \sqrt{3}}$	M1	$\frac{2 \sqrt{3}+\sqrt{27}}{\sqrt{27} \times \sqrt{3}}$
	$\frac{5}{3 \sqrt{3}}$	M1	$\frac{2 \sqrt{3}+\sqrt{27}}{\sqrt{81}}$ or numerator $2 \sqrt{3}+\sqrt{27}$ or better
	$\frac{5}{3 \sqrt{3}}=\frac{5 \times \sqrt{3}}{3 \sqrt{3} \times \sqrt{3}}$	M1	$\frac{2 \sqrt{3}+3 \sqrt{3}}{9}$
	$\frac{5 \sqrt{3}}{9}$	$\frac{5 \sqrt{3}}{9}$	

