

1(b)(i)	$\frac{y}{2}$ oe			1		
1(b)(ii)	x			1		
1(b)(iii)	90 + x oe			2	FT 90 + their (a)(ii) B1 for $B\hat{A}C = 90^{\circ}$ or $B\hat{D}C = 90^{\circ}$	
1(b)(iv)	$90 - x - \frac{y}{2}$ oe			1		
2	27				B1 for $B\hat{O}Q = 54$ soi or $O\hat{B}Q = 90$ soi or $B\hat{O}Q = 2x$ soi	
3(a)	35			1		
3(b)	(b) 100		2 B1 for $\angle OAB = 55$ or $\angle OBA = 55$			
4(a)	66			2	M1 for $\frac{180-48}{2}$ soi	
4(b)	108		0	1		
4(c)	126			1		
5(a)	$A\hat{B}O = 50^{\circ}$ angles on straight line $A\hat{O}B = 80^{\circ}$ angles in isosceles triangle $A\hat{C}B = 40^{\circ}$ angles at centre twice angle at circumference	3			one correct angle with reason $\hat{C}B = 40^{\circ}$ nfww	
6.	Use of Pythagoras leading to 10.5 oe			4	B1 for $OP = 4$ and $PQ = x$ soi M1 for $OQ^2 = OT^2 + TQ^2$ oe soi B1 for $x^2 + 4x + 4x + 16$ seen or $x^2 + 8x + 16$ seen	
7(b)(i)	124°			2	B1 for $\angle ADB$ or $\angle BCA = 62^{\circ}$ soi or $\angle AOD = 56^{\circ}$ soi or $\angle AOB = 124^{\circ}$ soi	
8(a)	34° cao		1			
8(b)	68° cao		1			
8(c)	77° cao		1			

9(a)	$\angle BCX = \angle DCY$, [vertically] oppos $\angle XBC = \angle BCX$, $\angle YDC = \angle DCY$, a in isosceles [triangles] Hence $\angle XBC = \angle YDC$ $\angle CXB = \angle DYC$, third angle in trian Hence triangles similar	angles		3	B1 for two correct pairs of angles B1 for correct reason for one pair of angles
9(b)(i)	90 - x oe final answer			1	
9(b)(ii)	180 - 2 x oe final answer			1	FT 2 × their algebraic (b)(i)
10(a)	53		1		
10(b)	40		1		
10(c)	22		1		
11(a)	106		1		<u>_</u>
11(b)	127		1		
11(c)	59		1		40
11(d)	31		1 FT 90		00 – their(c)
12(a)(i)	$\frac{y}{2}$ oe angle at centre = twice angle at circumference oe		2		B1 for $\frac{y}{2}$
12(a)(ii)	90 -y oe [Angle between] radius and tangent = 90°, [sum of angles in a triangle]			2	B1 for 90 – <i>y</i>
12(a)(iii)	or 2(90 – their (a)(ii)) or 180 – 2 their (a)(ii) Angle in semicircle = 90°		2FT		FT dependent on expressions in <i>y</i> B1 for 2 <i>y</i>
13(a)	Angles in same segment are equal			1	
13(b)	∠ <i>PQT</i> = 55°			1	
13(c)	∠SPQ = 70°		1		
13(d)	$\angle SRQ = 110^{\circ}$		1 F		TT 180 – their (c)
14 (a)	TAB ATB Statement mentions tar and radius ABT	ngent		2	B1 for 2 pairs of equal angles.

15	(a)					
	(b)	146		1		
	(c)	34; 0	or FT their (a)/2; or FT 180 – their(b)	1 √		
	(d)					
16	(a) (i	i)	Convincing explanation		1	
	(ii)		28		2	B1 for $\widehat{OCD} = 124$ or triangle COD isosceles soi
	(iii)		76		1ft	
17	(a)					
	(b)					
	(c)	48	or FT 110 – <i>their (b)</i>		1 √	. (0
				8		