

Name:

Section:

Matrices Worksheet

1 (a) Express
$$\binom{2}{1} - 3 \binom{-1}{2} + 2 \binom{0}{-2}$$
 as a single vector.

Answer
$$(2)$$

(b) Find
$$(2 -1)\begin{pmatrix} 0 & -1 & 2 \\ 3 & 1 & -3 \end{pmatrix}$$
.

Answer [2]

2 (a) The matrix A satisfies the following equation.

$$\begin{pmatrix} 2 & 3 \\ 5 & 2 \end{pmatrix} - 3\mathbf{A} = \begin{pmatrix} 5 & 3 \\ -4 & -1 \end{pmatrix}$$

Find A.

$$\mathbf{A} = \left(\begin{array}{c} \\ \end{array} \right) \quad [2]$$

(b)
$$\mathbf{B} = \begin{pmatrix} 2 & -2 \\ 4 & p \end{pmatrix}$$

The determinant of **B** is 2.

Find the value of p and hence write down \mathbf{B}^{-1} .

$$\mathbf{B}^{-1} = \left(\begin{array}{c} \\ \end{array} \right) \quad [3]$$

$$\mathbf{3} \qquad \mathbf{A} = \begin{pmatrix} 2 & 1 \\ -3 & -2 \end{pmatrix}$$

(a) Find A^2 .

(b) The matrix
$$\mathbf{X}$$
 satisfies the equation $\mathbf{X}\begin{pmatrix} 2 & 1 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \end{pmatrix}$. Find \mathbf{X} .

$$X =$$
 [2]

Find. 4

$$\begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}^{-1}$$

- 5 Adam and Ben buy tickets for the cinema and the theatre.
 - (a) Adam buys 5 cinema tickets and 4 theatre tickets. Ben buys 7 cinema tickets and 9 theatre tickets.

Complete the matrix, **X**, to represent this information.

Cinema Theatre $\mathbf{X} = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

(b) Cinema tickets cost \$11 each and theatre tickets cost \$30 each. The matrix **Y** represents this information.

$$\mathbf{Y} = \begin{pmatrix} 11\\30 \end{pmatrix}$$

(i) P = XY

Find the matrix **P**.

$$\mathbf{P} = [2]$$

(ii) Explain what the elements in matrix **P** represent.

......[1

On Monday, 40 adults and 20 children visit a museum.
On Tuesday, 30 adults and 35 children visit the museum.
The cost of an adult ticket is \$2.50 and the cost of a child ticket is \$2.

This information can be represented by the matrices M and N.

$$\mathbf{M} = \begin{pmatrix} 40 & 20 \\ 30 & 35 \end{pmatrix} \qquad \qquad \mathbf{N} = \begin{pmatrix} 2.50 \\ 2 \end{pmatrix}$$

(a) (i) Work out MN.

$$MN = [2]$$

(ii) Explain what the numbers in your answer to part (a)(i) represent.

.....[1]

(b) The museum increases the cost of tickets by 10%.

Complete matrix **P** to show the new ticket costs.

$$\mathbf{P} = \left(\begin{array}{c} \\ \end{array} \right) [2]$$

$$\mathbf{7} \qquad \mathbf{A} = \begin{pmatrix} 2 & 0 \\ -3 & -1 \end{pmatrix}$$

(a) Evaluate $2\mathbf{A} - \begin{pmatrix} -5 & 4 \\ 0 & 3 \end{pmatrix}$.

(b) Find |**A**|.

(c) Find A^{-1} .

(d) Find the matrix **X**, where $\mathbf{X}\mathbf{A} = \begin{pmatrix} 4 & -2 \end{pmatrix}$.

$$X = [2]$$

8 (a) Express $3\begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} - 2\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$ as a single matrix.

(b) Find the inverse of
$$\begin{pmatrix} \frac{1}{2} & 1 \\ 0 & 1 \end{pmatrix}$$
.

(c) Find the matrix **X** such that
$$\mathbf{X}(3\ 2) = \begin{pmatrix} 6 & 4 \\ -3 & -2 \end{pmatrix}$$
.

9 (a)
$$\mathbf{P} = \begin{pmatrix} 4 & 0 \\ -2 & 3 \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

Evaluate **PQ**.

(b)
$$\mathbf{M} = \begin{pmatrix} 3 & -1 \\ 2 & k \end{pmatrix}$$

The determinant of matrix M is -4.

(i) Find the value of k.

$$k = \dots$$
 [1]

(ii) Find \mathbf{M}^{-1} .

$$\mathbf{A} = \begin{pmatrix} 4 & -1 \\ 2 & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 6 & -3 \\ 0 & -2 \end{pmatrix}$$

(a) Find the matrix X, such that 2A + X = B.

(b) Find the matrix **Y**, such that $\mathbf{AY} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

11	11 During two weeks, a shopkeeper records the number of packets of two different types of te and the profit he makes from them.	
	Week 1	Type A tea, 30 packets sold, profit of \$1.20 on each packet Type B tea, 20 packets sold, profit of \$2 on each packet

Week 2

- Type A tea, 40 packets sold, loss of \$0.50 on each packet
- Type B tea, 30 packets sold, profit of \$3 on each packet

This information can be represented by these matrices.

$$(30 20) (40 30) \begin{pmatrix} 1.2 \\ 2 \end{pmatrix} \begin{pmatrix} -0.5 \\ 3 \end{pmatrix}$$

(a) Work out
$$(30 \ 20) \binom{1.2}{2} - (40 \ 30) \binom{-0.5}{3}$$
.

(b) Explain the meaning of your answer to part (a).

12
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -4 & -2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 5 & 3 \\ -2 & 1 \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

(a) Calculate 2B - 3A.

Answer
$$\left(\begin{array}{c} \\ \end{array}\right)$$
 [2]

(b) Calculate BC.

(c) Calculate $A^{-1} + A$.

1	3

$$\mathbf{A} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \qquad \mathbf{A}^{-1} = k \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

(a) Find the value of k.

Answer $k = \dots [1]$

(b) Find the matrix **X**, where $2\mathbf{A} + \mathbf{X} = \begin{pmatrix} 5 & -2 \\ 0 & 4 \end{pmatrix}$.

(c) Find the matrix Y, where $YA = (6 \ 2)$.

		/ 2\	/ 1\
14	(a) Express as a single matrix	5(-1)-4	$\left -3\right $.
		\ 3/	0

(b) Express as a single matrix
$$\begin{pmatrix} 7 & -1 & 3 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
.

(c)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -2 & 4 \end{pmatrix}$$

(i) Find \mathbf{A}^{-1} .

(ii)
$$\mathbf{B} + 3\mathbf{I} = \mathbf{A}$$
 where \mathbf{I} is the 2×2 identity matrix.
Find \mathbf{B} .

$$\mathbf{m} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \quad \mathbf{n} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

(a) Calculate m-2n.

(b) Given that
$$s\mathbf{m} + 3\mathbf{n} = \begin{pmatrix} 12 \\ t \end{pmatrix}$$
, calculate s and t .

