PapaCambridge

1(a)	$\frac{30}{x} \times 60[=]\frac{1800}{x}$			1	e.g. $\frac{30 \times 60}{x} [=] \frac{1800}{x}$ or $\frac{30}{\left(\frac{x}{60}\right)} [=] \frac{1800}{x}$		
1(b)	b) $\frac{600}{x-25} - \frac{1800}{x} = 8$]	M1	or $\frac{600}{x-25} = \frac{1800}{x} + 8$ or $\frac{600}{x-25} - 8 = \frac{1800}{x}$		
	$600x - 1800x + 45000 = 8x^2 - 200x$ or better		I	M1	Strict FT correct elimination of fractions and brackets		
	Correct rearrangement to $x^2 + 125x - 5625 = 0$			A1	A0 if any errors or omissions in working		
1(c)	$\frac{-125 \pm \sqrt{125^2 - 4 \times (-5625)}}{2 \times 1} \text{ or } -62.5 \pm \sqrt{9531.25}$			B2	B1 for $\sqrt{125^2 - 4 \times (-5625)}$ oe or $\frac{-125 \pm \sqrt{their 38125}}{2 \times 1}$ or $(x+62.5)^2$		
	35.1, -160.1		0	B1			
2a	$\frac{x}{12} \times \frac{x-1}{11} = \frac{14}{33}$ M1						
	$x^{2} - x - 56 = 0$ oe Alternative: $x(x - 1) = 56$ cao	A1					
	(x-8)(x+7) = 0 or $[x=] \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times -56}}{2 \times 1}$ Alternative: $8(8-1) = 56$ soi	M1	Dep on M1 FT factorisation/use of formula for <i>their</i> 3-term quadratic				
3(a)	[W =] x + 5 [L =] 2(x + 5) oe final answers		2		for $[W =]x + 5$ B1FT for $[L =]2 \times their$ algebraicW		
3(b)	$(x+5) \times 2(x+5) + 2(x \times (x+5))$ + 2(x \times 2(x+5)) oe			M2 FT <i>their</i> algebraic expressions in x for length and width B1FT for two different areas seen e.g. two of $(x + 5) \times 2(x + 5)$, $x(x + 5)$, $x \times 2(x + 5)$ or $2((x + 5) \times 2(x + 5) + x(x + 5) + x \times 2(x + 5))$			
	$2x^2 + 20x + 50 + 2x^2 + 10x + 4x^2 + 20x = 210$		Mı		Set equal to 210 and expansion of brackets. Must have three different areas from width and length of form $ax + b$, a and $b \neq 0$		
	Correct simplification to $4x^2 + 25x - 80 = 0$		A1				

3(c)	$\frac{\frac{-25 \pm \sqrt{25^2 - 4 \times 4 \times -80}}{2 \times 4}}{\frac{-25}{8} \pm \sqrt{\left(\frac{25}{8}\right)^2 - \frac{-80}{4}}}$ oe or	F		B1 for $\sqrt{25^2 - 4 \times 4 \times -80}$ oe or $\frac{-25 \pm []}{2 \times 4}$ oe or $\left(x + \frac{25}{8}\right)^2$		
	2.33 and -8.58	ŀ	B1			
4(a)(i)	$\frac{12 \times 60}{x}$ oe	1				
4(a)(ii)	$\frac{8 \times 60}{x - 1.5}$ oe	1	Aft $\frac{12}{x}$	-		
4(a)(iii)	$\frac{720}{x} + \frac{480}{x - 1.5} = 110 \text{ oe}$	M1	FT	T their (a)(i) and (a)(ii) if functions of x		
	$\frac{720(x-1.5)+480x}{x(x-1.5)} = 110 \text{ or}$ 720(x-1.5) + 480x = 110x(x-1.5)	M1	<i>q, 1</i> AN for	p on equation of form $\frac{c}{px} + \frac{d}{qx+r} = e$ where <i>p</i> , <i>r</i> , <i>c</i> , <i>d</i> and <i>e</i> are numeric and non zero, ND either correctly uses a common denominator <i>their</i> fractions correctly removes <i>their</i> fractions		
	$720x - 1080 + 480x = 110x^{2} - 165x$ With a minimum of one intermediate step establishes $22x^{2} - 273x + 216 = 0$	A1 A1	Co	orrect elimination of correct brackets		
4(a)(iv)	$\frac{-(-273) \pm \sqrt{(-273)^2 - 4 \times 22 \times 216}}{2 \times 22}$ or $\frac{273}{44} \pm \sqrt{\left(\frac{273}{44}\right)^2 - \left(\frac{216}{22}\right)}$	B2	or	for $\sqrt{(-273)^2 - 4 \times 22 \times 216}$ for $\frac{-(-273) \pm \sqrt{their 55521}}{2 \times 22}$ for $\left(x - \frac{273}{44}\right)^2$		
	11.56 and 0.85 cao	B 1				
5	$\frac{v}{2v+3}$ final answer nfww	3		for $v(v-8)$ seen for $(2v+3)(v-8)$ seen		

6(a)	$3x^2 +$	16x - 460 = 0 correctly derived	4	
				B1 for $(x+4)(3x+4)$ oe and
				M1 for expanding brackets and collecting like terms and
				M1 for <i>their</i> area = 476 and
				A1 for correct simplification leading to $3x^2 + 16x - 460 = 0$
6(b)	10 and	$1 - \frac{46}{3}$ oe (-15.3)	3	
				B2 for $(x - 10)(3x + 46)$ Or
				M1 for such as $(x + a)(3x + b)$ with $ab = -460$ or $3a + b = 16$
				A1FT for solutions from their factors
6(c) .		t =] 14 th =] 34	2FT	B1FT for either, or for both correct but in the wrong places
7	-4 or 1	1.5 oe	3	B1 for $2x^2 + 5x - 12 = 0$ and M1 for $(2x - 3)(x + 4) = 0$
				OR
				M1 for FT factorising their 3-term quadratic equation
				Or for correct FT substitution into formula oe
				and
ļ			<u> </u>	A1FT for solutions from their quadratic equation
8(b) (i	i)	$(PQ =) \frac{17}{x+5}$	1	
(ii)		$3x^2 + 15x - 85$ (=0) oe shown	3	M1 for $(AB =)$ their $(PQ) + 3$ and
				M1 for (their($PQ + 3$) × $x = 17$ or

(iii)			3.38 -8.38		3	B1 for y		$15^2 - 4 \times 3 \times (-85)$ soi and	
						B1 f	B1 for $\frac{-15 \pm \sqrt{their 1245}}{2 \times 3}$ soi and		
						M1 for		oth real values of $\frac{p \pm \sqrt{q}}{r}$	
	(iv)		20.8		2ft	x = t	M1 for their(PQ) and $x + 5$ evaluated using $x =$ the positive root from (b)(iii). or for their perimeter in algebraic form		
9	(i)		HER $dth = \frac{18 - 4x}{2} oe$	OR Width = $\frac{10}{2x}$ oe		M1			
		18-	$\frac{-4x}{2} \times 2x = 10 \text{ oe}$	$4x + \frac{20}{2x} = 18$ oe		A1		isw	
	(ii) 3.85 and 0.65 cao		(3		B2 for 3.850 to 3.851 and 0.649 to 0.650 or one correct answer or 3.9 and 0.6 $n \pm \sqrt{a}$ $n \pm \sqrt{a}$			
					Ś			Or if in form $\frac{p \pm \sqrt{q}}{r}$ or $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$	
								B1 for $p = 9$ and $r = 4$ or $q = 41$	
	(iii)	6.3	5 to 6.45 or – 6.45 to	o – 6.35 oe		1			
10	10 (a) (i) -4.62 -2.38 final answer				2 B1 for one value SC1 for both -4.6 and -2.4				
	(ii)		(B =) 7 (C =) 11			3	3 M1 for $(x + \frac{7}{2})^2 = \frac{5}{4}$ and B1 for one correct value		
11	11 (c) (i) $h^2 + (h+7)^2 = 23^2$ leading to correct rearrangement		2	M1 for $h^2 + (h+7)^2 = 23^2$					
	(ii)		$\frac{h}{2}$ (h + 7) oe isw		1				
	(iii)		120 cao		1				
(iv)		12.4, -19.4		3	12.4 Or i and	B2 for one correct solution, or for 12.38 to 12.40 and -19.38 to -19.40 Or if in form $\frac{p \pm \sqrt{q}}{r}$, B1 for $p = -7$ and $r = 2$ and B1 for $q = 1009$ or $\sqrt{q} = 31.7$ to 31.8			
	(v) 54.76 to 54.8			1FT					

12(a) (i)
$$\frac{320}{x}$$
 isw
1

(ii)
 $2x^2 + 5x - 20 (= 0)$ correctly found
3
M2 for their $\frac{320}{x} - their \frac{320}{x + 2\frac{1}{2}} = 80$ oc

M2 for their $\frac{320}{x} - their \frac{320}{x + 2\frac{1}{2}} = -80$ oe
SC1 after 0 for $\frac{320}{x + 2\frac{1}{2}}$ seen.

(iii)
2.15
-4.65
3
B1 for $\frac{\sqrt{5^2 - 4x + 2x - (-20)}}{2 \times 2}$ soi and

B1 for $\frac{-5 \pm \sqrt{their + 185}}{2 \times 2}$ soi
if B1 or B0 at this stage, allow M1 for both values of $\frac{p \pm \sqrt{q}}{x}$

(iv)
69
2
M1 for $\frac{320}{their + ve + 2.5}$ oe

13
(a) (i)
 $40 - x$
1

(ii)
 $x^2 - 40x + 250 = 0$
1

(iii)
7.8
32.2

13
(a)
(i)
 $x^2 - 40x + 250 = 0$

(iii)
7.8
32.2