

Arc length & Area of Sector worksheet

1

E, F, G and H are points on a circle with centre O and radius 6 cm. $E\hat{H}O=30^\circ$ and $E\hat{F}G=116^\circ$.

Calculate the shaded area.

The diagram shows the major sector of a circle with centre O and radius 3 cm.

Calculate the area of this sector.

Give your answer in the form $k\pi$, where k is an integer.

P and Q are points on the circumference of a different circle, centre Q. PR and QR are tangents to the circle at P and Q respectively. QP = 8 cm and $P\hat{Q}Q = 130^{\circ}$.

(i) Find *PR*.

$$PR = \dots cm [2]$$

(ii) Calculate the percentage of quadrilateral *OPRQ* that is shaded.

The diagram shows two circles, both with centre O.

The radius of the small circle is 3 cm and the radius of the large circle is 6 cm.

The minor sector AOB has an angle of 60°.

The total area of the shaded regions is $k\pi \,\mathrm{cm^2}$.

Find the value of k.

4

AC and BD are diameters of the circle, centre O. AC = 12 cm and $A\hat{O}B = 130^{\circ}$.

(a) Calculate the area of triangle AOB.

Answer	 cm ² [2]

(b) Calculate the area of the sector *AOD*.

6 (a)

OAB is a sector of a circle, centre *O*, radius 11 cm. $A\hat{O}B = 134^{\circ}$.

(i) Calculate the length of the arc AB.

(ii) Calculate the shortest distance from O to the line AB.

7 (a) The ventilation shaft for a tunnel is in the shape of a cylinder. The cylinder has radius 0.4 m and length 15 m.

Calculate the volume of the cylinder.

(b) The diagram shows the cross-section of the tunnel.

The cross-section of the tunnel is a major segment of a circle, centre O. The radius of the circle is $4.5 \,\mathrm{m}$ and $A\hat{O}B = 110^{\circ}$.

Calculate the area of the cross-section of the tunnel.

OAB is a sector of a circle, centre O, and radius 10 cm. $A\hat{O}B = 72^{\circ}$ and C is the point on the arc AB such that OC bisects $A\hat{O}B$.

(a) Calculate the perimeter of sector *OAB*.

cm [3]

(b) (i) Calculate the area of sector *OAB*.

2		
 cm ²	2	

(ii) Calculate the total shaded area.

- 9 (a) P and Q are points on the circumference of a circle, centre O, radius R cm. The minor arc PQ = 20 cm and $P\hat{O}Q = 48^{\circ}$.
 - (i) Show that R = 23.9, correct to one decimal place.

[3]

(ii) Calculate the area of the minor sector *POQ*.

Answer cm² [2]

(iii) The minor sector POQ is removed from the circle and the remaining major sector is shaped to form an open cone of radius r cm.

Calculate r.

The diagram shows a sector of a circle with radius 3r cm and angle a° and a circle with radius r cm.

The ratio of the area of the sector to the area of the circle with radius r cm is 8:1.

(a) Find the value of a.

(b) Find an expression, in terms of π and r, for the perimeter of the sector.

11 (a) *OAB* is a sector of a circle, centre *O*, radius 6 cm.

$$\hat{AOB} = 25^{\circ}$$
.

(i) Calculate the length of the arc AB.

(ii) Calculate the area of the sector *OAB*.

(b) The sector *OAB* from part **(a)** is the cross-section of a slice of cheese.

The slice has a height of 5 cm.

(i) Calculate the volume of this slice of cheese.

(ii) Calculate the total surface area of this slice of cheese.

The angle of a sector of a circle, radius 6 cm, is 40°.

(i)	The area of the sector is	$k\pi \mathrm{cm}^2$
	Find the value of k .	

Answer	 [2]

(ii) Find an expression, in terms of π , for the perimeter of the sector. Give your answer in the form $(a + b\pi)$ centimetres.

Answer	 cm [2]

(iii) A geometrically similar sector has perimeter $(72 + n\pi)$ centimetres. Find the value of n.

Answer		[1	
--------	--	---	---	--

A hollow cone has a base radius 6 cm and slant height 10 cm.

The curved surface of the cone is cut, and opened out into the shape of a sector of a circle, with angle x° and radius r cm.

(a) Write down the value of r.

Answer	r =	 [1]	Ì

(b) Calculate *x*.

Answer
$$x =$$
 [2]

14 P and Q are points on the circle centre O with radius 4 cm. $P\hat{O}Q = 130^{\circ}$.

(i) Calculate the area of triangle *POQ*.

(ii) Calculate the area of the major segment, shown **unshaded** in the diagram.

Answer cm^2 [3]

15

The diagram shows a sector AOB of a circle with centre O and radius 6 cm. The angle of the sector is 310° .

(a) Calculate the total perimeter of the sector.

Mo

(b) Calculate the area of the sector.

AD and BC are arcs of circles with centre O. A is a point on OB, and D is a point on OC. OA = 20 cm and AB = 25 cm. $A\hat{O}D = 150^{\circ}$.

(a) Calculate the perimeter of the shaded shape ABCD.

(b) Calculate the area of the shaded shape *ABCD*.

(c) The shape ABCD is used to make a lampshade by joining AB and DC.

Calculate the radius, r cm, of the circular top of the lampshade.