PapaCambridge

1	$\hat{ACD} = D\hat{C}E$, shared angle $\hat{ADC} = D\hat{E}C = 90$, [given] $\hat{DAC} = E\hat{D}C$ [third] angles in a triangle Three angles equal, therefore the triangles are similar		3	B2 cor or cor ang	for two correct pairs of angles with rect reasons B1 for one correct pair of angles with rect reason or two correct pairs of gles with incorrect/no reasons
2	AC=BD equal diameters AB is common $\angle ABC = \angle BAD = 90^{\circ}$ angle in semicircle Congruent RHS			3	B1 for correct pair of angles and one correct pair of sides or for two correct pairs of sidesB1 for correct reasons for two pairs of sides/angles
3	$OA = OC$ radii3 $\angle APO = \angle CQO$ perpendicular to chord $AP = CQ$ midpoints [of equal chords] RHS OR $OA = OC$ radii $OP = OQ$ equal chords [equidistant from centre] $AP = CQ$ midpoints [of equal chords]SSSOR $OP = OQ$ equal chords [equidistant from centre] $\Delta P = CQ$ midpoints [of equal chords]SSSOR $OP = OQ$ equal chords [equidistant from centre] $\angle APO = \angle CQO$ perpendicular to chord $AP = CQ$ midpoints [of equal chords]SAS	B1	for pair for	the of a corr	correct pair of angles and one correct sides or for two correct pairs of sides rect reason for two pairs of sides/angles
4	$\angle BAX = \angle OCX$, alternate [angles] $\angle ABX = \angle COX$, alternate [angles] $\angle AXB = \angle CXO$, [vertically] opposite	3	B1 fo B1 fo	or tv or co	vo correct pairs of angles prrect reason for one pair of angles
5	$\angle POA = \angle QOB$ vertically opposite AO = OB equal radii $\angle PAO = \angle QBO = 90^{\circ}$ tangent perpendicular to radius	p	3	*	B1 for two pairs of equal angles: $\angle POA = \angle QOB$ and $\angle PAO = \angle QBO$ or for one pair of angles and pair of sides: $\angle POA = \angle QOB$ or $\angle PAO = \angle QBO$ and $AO = OB$ AND B1 for a correct reason linked with a correct pair of angles/sides

6			<i>x</i> = 45			1		
			y = 20			1		
			<i>z</i> = 115			1		
7			<i>p</i> = 3.8		2	B	1 for c	one correct
			$q = 77^{\circ}$					
8	(a)	14	40		1			
	(b)	1.	2		2		M1 f $3 \times (-1)$	For $3 \times \left(\frac{7}{5} - 1\right)$; or $\frac{their(a)}{2} - 1$; oe
							orac	100) complete algebraic method.
9	(a)	1	:2 oe		1			.01
	(b)	1	: 8 oe, or ft <i>their</i> (a) cubed		1√^			
10	(a)	(i) (ii)	EC = BE or AC = FE and $\angle AEC = \angle FBE \text{ or } \angle ECA = \angle BEF$ Two correct reasons for their choices Third statement, leading to correct congruence condition i.e. RHS, SAS, SSA BFD	F F	31 31 31	Stat EC ∠AC ∠E	ement = BE; = FE; EC = _ CA = _	ts and reasons: radii diameters $\angle FBE [= 90^\circ]$; angle in semicircle $\angle BEF [= 60^\circ]$; equilateral triangle
11	(a)		Establishing, with reasons, that two pairs of angles are equal; and a conclusion (or an introductory statement), that the triangles a similar. e.g. $A\hat{B}D = B\hat{D}C$ (alternate angles) $A\hat{D}B = B\hat{C}D$ (given) Since two angles are equal, triangles <i>ABD</i> a <i>BDC</i> are similar.	f re and		2	B1 alte	for $A\hat{B}D = B\hat{D}C$, with mention of ernate angles
	(b)	(i)	6.3			2	B 1	for $\frac{BC}{4.2} = \frac{6}{4}$ oe
		(ii)	<u>4</u> 9			1		
	12 (1	i)	Similar triangles established www		2	B 1	for a o	correct pair of equal angles
			(ii) 7.2		2	B1 5 :	for co 2 soi	prresponding sides in the ratio

13	(a) 3		1	
	(b) $13\frac{1}{2}$ oe		1	
	(c) $4\frac{1}{2}$ oe		1	
14	(a) $180 - x - y$ or $180 - (x + y)$ only		1	
	(b) $3\frac{3}{4}$ or any equiv.		1	
	(c) $\frac{9}{16}$		1	
15	18	2	B1 for M1 fo	r attempt at $\sqrt[3]{8}$: $\sqrt[3]{27}$ or or 12^3 : $x^3 = 8$: 27 oe